Nilpotent Algebra
   HOME
*





Nilpotent Algebra
In mathematics, specifically in ring theory, a nilpotent algebra over a commutative ring is an algebra over a commutative ring, in which for some positive integer ''n'' every product containing at least ''n'' elements of the algebra is zero. The concept of a nilpotent Lie algebra_has_a_different_definition,_which_depends_upon_the_Lie_bracket.html" ;"title="mathfrak,\mathfrak ... has a different definition, which depends upon the Lie bracket">mathfrak,\mathfrak ... has a different definition, which depends upon the Lie bracket. (There is no Lie bracket for many algebras over commutative rings; a Lie algebra involves its Lie bracket, whereas, there is no Lie bracket defined in the general case of an algebra over a commutative ring.) Another possible source of confusion in terminology is the ''quantum nilpotent algebra'', a concept related to quantum groups and Hopf algebras. Formal definition An associative algebra A over a commutative ring R is defined to be a nilpotent algebra if ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Associativity
In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs. Within an expression containing two or more occurrences in a row of the same associative operator, the order in which the operations are performed does not matter as long as the sequence of the operands is not changed. That is (after rewriting the expression with parentheses and in infix notation if necessary), rearranging the parentheses in such an expression will not change its value. Consider the following equations: \begin (2 + 3) + 4 &= 2 + (3 + 4) = 9 \,\\ 2 \times (3 \times 4) &= (2 \times 3) \times 4 = 24 . \end Even though the parentheses were rearranged on each line, the values of the expressions were not altered. Since this holds true when performing addition and multiplication on any real ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebras
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras and non-associative algebras. Given an integer ''n'', the ring of real square matrices of order ''n'' is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dimensional Euclidean space with multiplication given by the vector cross product is an example of a nonassociative algebra over the field of real numbers since the vector cross product is nonassociative, satisfying the Jacobi identity inste ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Example Of A Non-associative Algebra
A non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure ''A'' is a non-associative algebra over a field ''K'' if it is a vector space over ''K'' and is equipped with a ''K''- bilinear binary multiplication operation ''A'' × ''A'' → ''A'' which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation. Since it is not assumed that the multiplication is associative, using parentheses to indicate the order of multiplications is necessary. For example, the expressions (''ab'')(''cd''), (''a''(''bc''))''d'' and ''a''(''b''(''cd'')) may all yield different answers. While this use of ''non-associative'' means that associativity is not assumed, it does not mean that associativity is disallowed. In other words, "non-associative" means "no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nil-Coxeter Algebra
In mathematics, the nil-Coxeter algebra, introduced by , is an algebra similar to the group algebra of a Coxeter group except that the generators are nilpotent. Definition The nil-Coxeter algebra for the infinite symmetric group is the algebra generated by ''u''1, ''u''2, ''u''3, ... with the relations : \begin u_i^2 & = 0, \\ u_i u_j & = u_j u_i & & \text , i-j, > 1, \\ u_i u_j u_i & = u_j u_i u_j & & \text , i-j, =1. \end These are just the relations for the infinite braid group, together with the relations ''u'' = 0. Similarly one can define a nil-Coxeter algebra for any Coxeter system In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean ref ..., by adding the relations ''u'' = 0 to the relations of the corresponding generalized braid group. Refere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Algebraic Structure
In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of identities, known as axioms, that these operations must satisfy. An algebraic structure may be based on other algebraic structures with operations and axioms involving several structures. For instance, a vector space involves a second structure called a field, and an operation called ''scalar multiplication'' between elements of the field (called '' scalars''), and elements of the vector space (called '' vectors''). Abstract algebra is the name that is commonly given to the study of algebraic structures. The general theory of algebraic structures has been formalized in universal algebra. Category theory is another formalization that includes also other mathematical structures and functions between structures of the same type (homomor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nilpotent
In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term was introduced by Benjamin Peirce in the context of his work on the classification of algebras. Examples *This definition can be applied in particular to square matrices. The matrix :: A = \begin 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end :is nilpotent because A^3=0. See nilpotent matrix for more. * In the factor ring \Z/9\Z, the equivalence class of 3 is nilpotent because 32 is congruent to 0 modulo 9. * Assume that two elements a and b in a ring R satisfy ab=0. Then the element c=ba is nilpotent as \beginc^2&=(ba)^2\\ &=b(ab)a\\ &=0.\\ \end An example with matrices (for ''a'', ''b''):A = \begin 0 & 1\\ 0 & 1 \end, \;\; B =\begin 0 & 1\\ 0 & 0 \end. Here AB=0 and BA=B. *By definition, any element of a nilsemigroup is nilpotent. Properties No nilpotent element c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Power Associative
In mathematics, specifically in abstract algebra, power associativity is a property of a binary operation that is a weak form of associativity. Definition An algebra (or more generally a magma) is said to be power-associative if the subalgebra generated by any element is associative. Concretely, this means that if an element x is performed an operation * by itself several times, it doesn't matter in which order the operations are carried out, so for instance x*(x*(x*x)) = (x*(x*x))*x = (x*x)*(x*x). Examples and properties Every associative algebra is power-associative, but so are all other alternative algebras (like the octonions, which are non-associative) and even some non-alternative algebras like the sedenions and Okubo algebras. Any algebra whose elements are idempotent is also power-associative. Exponentiation to the power of any positive integer can be defined consistently whenever multiplication is power-associative. For example, there is no need to distinguish whe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Non-associative Algebra
A non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure ''A'' is a non-associative algebra over a field ''K'' if it is a vector space over ''K'' and is equipped with a ''K''- bilinear binary multiplication operation ''A'' × ''A'' → ''A'' which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation. Since it is not assumed that the multiplication is associative, using parentheses to indicate the order of multiplications is necessary. For example, the expressions (''ab'')(''cd''), (''a''(''bc''))''d'' and ''a''(''b''(''cd'')) may all yield different answers. While this use of ''non-associative'' means that associativity is not assumed, it does not mean that associativity is disallowed. In other words, "non-associative" means "not ne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ring Theory
In algebra, ring theory is the study of rings— algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings (group rings, division rings, universal enveloping algebras), as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological algebra, homological properties and Polynomial identity ring, polynomial identities. Commutative rings are much better understood than noncommutative ones. Algebraic geometry and algebraic number theory, which provide many natural examples of commutative rings, have driven much of the development of commutative ring theory, which is now, under the name of ''commutative algebra'', a major area of modern mathematics. Because these three fields (algebraic geometry, alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Associative Algebra
In mathematics, an associative algebra ''A'' is an algebraic structure with compatible operations of addition, multiplication (assumed to be associative), and a scalar multiplication by elements in some field ''K''. The addition and multiplication operations together give ''A'' the structure of a ring; the addition and scalar multiplication operations together give ''A'' the structure of a vector space over ''K''. In this article we will also use the term ''K''-algebra to mean an associative algebra over the field ''K''. A standard first example of a ''K''-algebra is a ring of square matrices over a field ''K'', with the usual matrix multiplication. A commutative algebra is an associative algebra that has a commutative multiplication, or, equivalently, an associative algebra that is also a commutative ring. In this article associative algebras are assumed to have a multiplicative identity, denoted 1; they are sometimes called unital associative algebras for clarification. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hopf Algebra
Hopf is a German surname. Notable people with the surname include: *Eberhard Hopf (1902–1983), Austrian mathematician *Hans Hopf (1916–1993), German tenor *Heinz Hopf (1894–1971), German mathematician *Heinz Hopf (actor) (1934–2001), Swedish actor *Ludwig Hopf (1884–1939), German physicist *Maria Hopf Maria Hopf (13 September 1913 – 24 August 2008) was a pioneering archaeobotanist, based at the RGZM, Mainz. Career Hopf studied botany from 1941–44, receiving her doctorate in 1947 on the subject of soil microbes. She then worked in phyto ... (1914-2008), German botanist and archaeologist {{surname, Hopf German-language surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]