Niemeier Lattices
   HOME
*





Niemeier Lattices
In mathematics, a Niemeier lattice is one of the 24 positive definite even unimodular lattices of rank 24, which were classified by . gave a simplified proof of the classification. has a sentence mentioning that he found more than 10 such lattices, but gives no further details. One example of a Niemeier lattice is the Leech lattice. Classification Niemeier lattices are usually labelled by the Dynkin diagram of their root systems. These Dynkin diagrams have rank either 0 or 24, and all of their components have the same Coxeter number. (The Coxeter number, at least in these cases, is the number of roots divided by the dimension.) There are exactly 24 Dynkin diagrams with these properties, and there turns out to be a unique Niemeier lattice for each of these Dynkin diagrams. The complete list of Niemeier lattices is given in the following table. In the table, :''G''0 is the order of the group generated by reflections :''G''1 is the order of the group of automorphisms fixing a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isomorphic
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσος ''isos'' "equal", and μορφή ''morphe'' "form" or "shape". The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may be identified. In mathematical jargon, one says that two objects are . An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a canonical isomorphism (a canonical map that is an isomorphism) if there is only one isomorphism between the two structures (as it is the case for solutions of a univer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Number Theory
The ''Journal of Number Theory'' (''JNT'') is a bimonthly peer-reviewed scientific journal covering all aspects of number theory. The journal was established in 1969 by R.P. Bambah, P. Roquette, A. Ross, A. Woods, and H. Zassenhaus (Ohio State University). It is currently published monthly by Elsevier and the editor-in-chief is Dorian Goldfeld (Columbia University). According to the ''Journal Citation Reports'', the journal has a 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... of 0.72. References External links * Number theory Mathematics journals Publications established in 1969 Elsevier academic journals Monthly journals English-language journals {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




II25,1
In mathematics, II25,1 is the even 26-dimensional Lorentzian unimodular lattice. It has several unusual properties, arising from Conway's discovery that it has a norm zero Weyl vector. In particular it is closely related to the Leech lattice Λ, and has the Conway group Co1 at the top of its automorphism group. Construction Write ''R''''m'',''n'' for the ''m''+''n''-dimensional vector space ''R''''m''+''n'' with the inner product of (''a''1,...,''a''''m''+''n'') and (''b''1,...,''b''''m''+''n'') given by :''a''1''b''1+...+''a''''m''''b''''m'' − ''a''''m''+1''b''''m''+1 − ... − ''a''''m''+''n''''b''''m''+''n''. The lattice II25,1 is given by all vectors (''a''1,...,''a''26) in ''R''25,1 such that either all the ''ai'' are integers or they are all integers plus 1/2, and their sum is even. Reflection group The lattice II25,1 is isomorphic to Λ⊕H where: *Λ is the Leech lattice, *H is the 2-dimensional even Lorentzian lattice, generated by 2 norm 0 vectors ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Affine Dynkin Diagram
In the mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of graph with some edges doubled or tripled (drawn as a double or triple line). Dynkin diagrams arise in the classification of semisimple Lie algebras over algebraically closed fields, in the classification of Weyl groups and other finite reflection groups, and in other contexts. Various properties of the Dynkin diagram (such as whether it contains multiple edges, or its symmetries) correspond to important features of the associated Lie algebra. The term "Dynkin diagram" can be ambiguous. In some cases, Dynkin diagrams are assumed to be directed, in which case they correspond to root systems and semi-simple Lie algebras, while in other cases they are assumed to be undirected, in which case they correspond to Weyl groups. In this article, "Dynkin diagram" means ''directed'' Dynkin diagram, and ''undirected'' Dynkin diagrams will be explicitly so named. Classification of semisimple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Double Covering Group
In mathematics, a covering group of a topological group ''H'' is a covering space ''G'' of ''H'' such that ''G'' is a topological group and the covering map is a continuous group homomorphism. The map ''p'' is called the covering homomorphism. A frequently occurring case is a double covering group, a topological double cover in which ''H'' has index 2 in ''G''; examples include the spin groups, pin groups, and metaplectic groups. Roughly explained, saying that for example the metaplectic group Mp2''n'' is a ''double cover'' of the symplectic group Sp2''n'' means that there are always two elements in the metaplectic group representing one element in the symplectic group. Properties Let ''G'' be a covering group of ''H''. The kernel ''K'' of the covering homomorphism is just the fiber over the identity in ''H'' and is a discrete normal subgroup of ''G''. The kernel ''K'' is closed in ''G'' if and only if ''G'' is Hausdorff (and if and only if ''H'' is Hausdorff). Going in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sporadic Simple Group
In mathematics, a sporadic group is one of the 26 exceptional groups found in the classification of finite simple groups. A simple group is a group ''G'' that does not have any normal subgroups except for the trivial group and ''G'' itself. The classification theorem states that the list of finite simple groups consists of 18 countably infinite plus 26 exceptions that do not follow such a systematic pattern. These 26 exceptions are the sporadic groups. They are also known as the sporadic simple groups, or the sporadic finite groups. Because it is not strictly a group of Lie type, the Tits group is sometimes regarded as a sporadic group, in which case there would be 27 sporadic groups. The monster group is the largest of the sporadic groups, and all but six of the other sporadic groups are subquotients of it. Names Five of the sporadic groups were discovered by Mathieu in the 1860s and the other 21 were found between 1965 and 1975. Several of these groups were predicted to exis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neighborhood Graph Of Niemeier Lattices
A neighbourhood (British English, Irish English, Australian English and Canadian English) or neighborhood (American English; see spelling differences) is a geographically localised community within a larger city, town, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neighbourhoods are often social communities with considerable face-to-face interaction among members. Researchers have not agreed on an exact definition, but the following may serve as a starting point: "Neighbourhood is generally defined spatially as a specific geographic area and functionally as a set of social networks. Neighbourhoods, then, are the spatial units in which face-to-face social interactions occur—the personal settings and situations where residents seek to realise common values, socialise youth, and maintain effective social control." Preindustrial cities In the words of the urban scholar Lewis Mumford, "Neighbourhoods, in some annoying, inchoate fashi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathieu Group
In group theory, a topic in abstract algebra, the Mathieu groups are the five sporadic simple groups ''M''11, ''M''12, ''M''22, ''M''23 and ''M''24 introduced by . They are multiply transitive permutation groups on 11, 12, 22, 23 or 24 objects. They were the first sporadic groups to be discovered. Sometimes the notation ''M''9, ''M''10, ''M''20 and ''M''21 is used for related groups (which act on sets of 9, 10, 20, and 21 points, respectively), namely the stabilizers of points in the larger groups. While these are not sporadic simple groups, they are subgroups of the larger groups and can be used to construct the larger ones. John Conway has shown that one can also extend this sequence up, obtaining the Mathieu groupoid ''M''13 acting on 13 points. ''M''21 is simple, but is not a sporadic group, being isomorphic to PSL(3,4). History introduced the group ''M''12 as part of an investigation of multiply transitive permutation groups, and briefly mentioned (on page 274) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Definite Bilinear Form
In linguistics, definiteness is a semantic feature of noun phrases, distinguishing between referents or senses that are identifiable in a given context (definite noun phrases) and those which are not (indefinite noun phrases). The prototypical definite noun phrase picks out a unique, familiar, specific referent such as ''the sun'' or ''Australia'', as opposed to indefinite examples like ''an idea'' or ''some fish''. There is considerable variation in the expression of definiteness across languages, and some languages such as Japanese do not generally mark it so that the same expression could be definite in some contexts and indefinite in others. In other languages, such as English, it is usually marked by the selection of determiner (e.g., ''the'' vs ''a''). In still other languages, such as Danish, definiteness is marked morphologically. Definiteness as a grammatical category There are times when a grammatically marked definite NP is not in fact identifiable. For example, ''t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Conway Group
In the area of modern algebra known as group theory, the Conway groups are the three sporadic simple groups Co1, Co2 and Co3 along with the related finite group Co0 introduced by . The largest of the Conway groups, Co0, is the group of automorphisms of the Leech lattice Λ with respect to addition and inner product. It has order : but it is not a simple group. The simple group Co1 of order : =  221395472111323 is defined as the quotient of Co0 by its center, which consists of the scalar matrices ±1. The groups Co2 of order : =  218365371123 and Co3 of order : =  210375371123 consist of the automorphisms of Λ fixing a lattice vector of type 2 and type 3, respectively. As the scalar −1 fixes no non-zero vector, these two groups are isomorphic to subgroups of Co1. The inner product on the Leech lattice is defined as 1/8 the sum of the products of respective co-ordinates of the two multiplicand vectors; it is an integer. The square norm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]