Nielsen Transformation
   HOME





Nielsen Transformation
In mathematics, especially in the area of modern algebra known as combinatorial group theory, Nielsen transformations are certain automorphisms of a free group which are a non-commutative analogue of row reduction and one of the main tools used in studying free groups . Given a finite basis of a free group F_n, the corresponding set of elementary Nielsen transformations forms a finite generating set of \mathrm(F_n). This system of generators is analogous to elementary matrices for GL_n(\Z) and Dehn twists for mapping class groups of closed surfaces. Nielsen transformations were introduced in to prove that every subgroup of a free group is free (the Nielsen–Schreier theorem). They are now used in a variety of mathematics, including computational group theory, k-theory, and knot theory. Definitions Free groups Let F_n be a finitely generated free group of rank n. An elementary Nielsen transformation maps an ordered basis _1,\ldots, x_n/math> to a new basis _1,\ldots,y ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Automorphism Group Of A Free Group
In mathematical group theory, the automorphism group of a free group is a discrete group of automorphisms of a free group. The quotient by the inner automorphisms is the outer automorphism group of a free group, which is similar in some ways to the mapping class group of a surface. Presentation showed that the automorphisms defined by the elementary Nielsen transformations generate the full automorphism group of a finitely generated free group. Nielsen, and later Bernhard Neumann used these ideas to give finite presentations of the automorphism groups of free groups. This is also described in . The automorphism group of the free group with ordered basis ''x''1, …, ''x''''n'' is generated by the following 4 elementary Nielsen transformations: * Switch ''x''1 and ''x''2 * Cyclically permute ''x''1, ''x''2, …, ''x''''n'', to ''x''2, …, ''x''''n'', ''x''1. * Replace ''x''1 with ''x''1−1 * Replace ''x''1 with ''x''1·''x''2 These transformations are the analogues of the ele ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Word Problem For Groups
A word is a basic element of language that carries meaning, can be used on its own, and is uninterruptible. Despite the fact that language speakers often have an intuitive grasp of what a word is, there is no consensus among linguists on its definition and numerous attempts to find specific criteria of the concept remain controversial. Different standards have been proposed, depending on the theoretical background and descriptive context; these do not converge on a single definition. Some specific definitions of the term "word" are employed to convey its different meanings at different levels of description, for example based on phonological, grammatical or orthographic basis. Others suggest that the concept is simply a convention used in everyday situations. The concept of "word" is distinguished from that of a morpheme, which is the smallest unit of language that has a meaning, even if it cannot stand on its own. Words are made out of at least one morpheme. Morphemes can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grushko Theorem
In the mathematical subject of group theory, the Grushko theorem or the Grushko–Neumann theorem is a theorem stating that the rank (that is, the smallest cardinality of a generating set) of a free product of two groups is equal to the sum of the ranks of the two free factors. The theorem was first obtained in a 1940 article of Grushko and then, independently, in a 1943 article of Neumann. Statement of the theorem Let ''A'' and ''B'' be finitely generated groups and let ''A''∗''B'' be the free product of ''A'' and ''B''. Then :rank(''A''∗''B'') = rank(''A'') + rank(''B''). It is obvious that rank(''A''∗''B'') ≤ rank(''A'') + rank(''B'') since if X is a finite generating set of ''A'' and ''Y'' is a finite generating set of ''B'' then ''X''∪''Y'' is a generating set for ''A''∗''B'' and that , ''X'' ∪ ''Y'', ≤ , ''X'', + , ''Y'', . The opposite inequality, rank(''A''∗''B'') ≥ rank(''A'') + rank(''B''), requires proof. Grushko, but not Neumann, proved a mor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Free Product
In mathematics, specifically group theory, the free product is an operation that takes two groups ''G'' and ''H'' and constructs a new The result contains both ''G'' and ''H'' as subgroups, is generated by the elements of these subgroups, and is the “ universal” group having these properties, in the sense that any two homomorphisms from ''G'' and ''H'' into a group ''K'' factor uniquely through a homomorphism from to ''K''. Unless one of the groups ''G'' and ''H'' is trivial, the free product is always infinite. The construction of a free product is similar in spirit to the construction of a free group (the universal group with a given set of generators). The free product is the coproduct in the category of groups. That is, the free product plays the same role in group theory that disjoint union plays in set theory, or that the direct sum plays in module theory. Even if the groups are commutative, their free product is not, unless one of the two groups is the trivial ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Automorphism Group
In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the group of invertible linear transformations from ''X'' to itself (the general linear group of ''X''). If instead ''X'' is a group, then its automorphism group \operatorname(X) is the group consisting of all group automorphisms of ''X''. Especially in geometric contexts, an automorphism group is also called a symmetry group. A subgroup of an automorphism group is sometimes called a transformation group. Automorphism groups are studied in a general way in the field of category theory. Examples If ''X'' is a set with no additional structure, then any bijection from ''X'' to itself is an automorphism, and hence the automorphism group of ''X'' in this case is precisely the symmetric group of ''X''. If the set ''X'' has additional structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finitely Presented Group
In mathematics, a presentation is one method of specifying a group. A presentation of a group ''G'' comprises a set ''S'' of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set ''R'' of relations among those generators. We then say ''G'' has presentation :\langle S \mid R\rangle. Informally, ''G'' has the above presentation if it is the "freest group" generated by ''S'' subject only to the relations ''R''. Formally, the group ''G'' is said to have the above presentation if it is isomorphic to the quotient of a free group on ''S'' by the normal subgroup generated by the relations ''R''. As a simple example, the cyclic group of order ''n'' has the presentation :\langle a \mid a^n = 1\rangle, where 1 is the group identity. This may be written equivalently as :\langle a \mid a^n\rangle, thanks to the convention that terms that do not include an equals sign are taken to be equal to the group identity. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bernhard Neumann
Bernhard Hermann Neumann (15 October 1909 – 21 October 2002) was a German-born British-Australian mathematician, who was a leader in the study of group theory. Early life and education After gaining a D.Phil. from Friedrich-Wilhelms Universität in Berlin in 1932 he earned a Ph.D. at the University of Cambridge in 1935 and a Doctor of Science at the University of Manchester in 1954. His doctoral students included Gilbert Baumslag, László Kovács, Michael Newman, and James Wiegold. After war service with the British Army, he became a lecturer at University College, Hull, before moving in 1948 to the University of Manchester, where he spent the next 14 years. In 1954 he received a DSc from the University of Cambridge. In 1962 he migrated to Australia to take up the Foundation Chair of the Department of Mathematics within the Institute of Advanced Studies of the Australian National University (ANU), where he served as head of the department until retiring in 1975. In additi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Automorphism Group Of A Free Group
In mathematical group theory, the automorphism group of a free group is a discrete group of automorphisms of a free group. The quotient by the inner automorphisms is the outer automorphism group of a free group, which is similar in some ways to the mapping class group of a surface. Presentation showed that the automorphisms defined by the elementary Nielsen transformations generate the full automorphism group of a finitely generated free group. Nielsen, and later Bernhard Neumann used these ideas to give finite presentations of the automorphism groups of free groups. This is also described in . The automorphism group of the free group with ordered basis ''x''1, …, ''x''''n'' is generated by the following 4 elementary Nielsen transformations: * Switch ''x''1 and ''x''2 * Cyclically permute ''x''1, ''x''2, …, ''x''''n'', to ''x''2, …, ''x''''n'', ''x''1. * Replace ''x''1 with ''x''1−1 * Replace ''x''1 with ''x''1·''x''2 These transformations are the analogues of the ele ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Polycyclic Group
In mathematics, a polycyclic group is a solvable group that satisfies the maximal condition on subgroups (that is, every subgroup is finitely generated). Polycyclic groups are finitely presented, which makes them interesting from a computational point of view. Terminology Equivalently, a group ''G'' is polycyclic if and only if it admits a subnormal series with cyclic factors, that is a finite set of subgroups, let's say ''G''0, ..., ''G''''n'' such that * ''G''''n'' coincides with ''G'' * ''G''0 is the trivial subgroup * ''G''''i'' is a normal subgroup of ''G''''i''+1 (for every ''i'' between 0 and ''n'' - 1) * and the quotient group ''G''''i''+1 / ''G''''i'' is a cyclic group (for every ''i'' between 0 and ''n'' - 1) A metacyclic group is a polycyclic group with ''n'' ≤ 2, or in other words an extension of a cyclic group by a cyclic group. Examples Examples of polycyclic groups include finitely generated abelian groups, finitely generated nilpotent groups, and finite solva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Group
In abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving transformations. Important examples of finite groups include cyclic groups and permutation groups. The study of finite groups has been an integral part of group theory since it arose in the 19th century. One major area of study has been classification: the classification of finite simple groups (those with no nontrivial normal subgroup) was completed in 2004. History During the twentieth century, mathematicians investigated some aspects of the theory of finite groups in great depth, especially the local theory of finite groups and the theory of solvable and nilpotent groups. As a consequence, the complete classification of finite simple groups was achieved, meaning that all those simple groups from which all finite groups can be bu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coxeter Group
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; for example, the symmetry group of each regular polyhedron is a finite Coxeter group. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced in 1934 as abstractions of reflection groups, and finite Coxeter groups were classified in 1935. Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the symmetry groups of regular polytopes, and the Weyl groups of simple Lie algebras. Examples of infinite Coxeter groups include the triangle groups corresponding to regular tessellations of the Euclidean plane and the hyperbolic plane, and the Weyl groups of infinite-dimensional ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]