Nakayama's Lemma
   HOME
*





Nakayama's Lemma
In mathematics, more specifically abstract algebra and commutative algebra, Nakayama's lemma — also known as the Krull–Azumaya theorem — governs the interaction between the Jacobson radical of a ring (typically a commutative ring) and its finitely generated modules. Informally, the lemma immediately gives a precise sense in which finitely generated modules over a commutative ring behave like vector spaces over a field. It is an important tool in algebraic geometry, because it allows local data on algebraic varieties, in the form of modules over local rings, to be studied pointwise as vector spaces over the residue field of the ring. The lemma is named after the Japanese mathematician Tadashi Nakayama and introduced in its present form in , although it was first discovered in the special case of ideals in a commutative ring by Wolfgang Krull and then in general by Goro Azumaya (1951). In the commutative case, the lemma is a simple consequence of a generalized form o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wolfgang Krull
Wolfgang Krull (26 August 1899 – 12 April 1971) was a German mathematician who made fundamental contributions to commutative algebra, introducing concepts that are now central to the subject. Krull was born and went to school in Baden-Baden. He attended the Universities of Freiburg, Rostock and finally Göttingen from 1919–1921, where he earned his doctorate under Alfred Loewy. He worked as an instructor and professor at Freiburg, then spent a decade at the University of Erlangen. In 1939 Krull moved to become chair at the University of Bonn, where he remained for the rest of his life. Wolfgang Krull was a member of the Nazi Party. His 35 doctoral students include Wilfried Brauer, Karl-Otto Stöhr and Jürgen Neukirch. See also * Cohen structure theorem * Jacobson ring * Local ring * Prime ideal * Real algebraic geometry * Regular local ring * Valuation ring * Krull dimension * Krull ring * Krull topology * Krull–Azumaya theorem * Krull–Schmidt category * Krull–S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


T1 Space
In topology and related branches of mathematics, a T1 space is a topological space in which, for every pair of distinct points, each has a neighborhood not containing the other point. An R0 space is one in which this holds for every pair of topologically distinguishable points. The properties T1 and R0 are examples of separation axioms. Definitions Let ''X'' be a topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points ... and let ''x'' and ''y'' be points in ''X''. We say that ''x'' and ''y'' are if each lies in a neighbourhood (mathematics), neighbourhood that does not contain the other point. * ''X'' is called a T1 space if any two distinct points in ''X'' are separated. * ''X'' is called an R0 space if any two topologically distinguishable points in ''X'' are separa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Completion (ring Theory)
In abstract algebra, a completion is any of several related functors on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have a simpler structure than general ones, and Hensel's lemma applies to them. In algebraic geometry, a completion of a ring of functions ''R'' on a space ''X'' concentrates on a formal neighborhood of a point of ''X'': heuristically, this is a neighborhood so small that ''all'' Taylor series centered at the point are convergent. An algebraic completion is constructed in a manner analogous to completion of a metric space with Cauchy sequences, and agrees with it in the case when ''R'' has a metric given by a non-Archimedean absolute value. General construction Suppose that ''E'' is an abelian group with a descending filtration : E = F^0 E \supset F^1 E \supset F^2 E \supset \cdots \, of s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Essential Extension
In mathematics, specifically module theory, given a ring ''R'' and an ''R''-module ''M'' with a submodule ''N'', the module ''M'' is said to be an essential extension of ''N'' (or ''N'' is said to be an essential submodule or large submodule of ''M'') if for every submodule ''H'' of ''M'', :H\cap N=\\, implies that H=\\, As a special case, an essential left ideal of ''R'' is a left ideal that is essential as a submodule of the left module ''R''''R''. The left ideal has non-zero intersection with any non-zero left ideal of ''R''. Analogously, an essential right ideal is exactly an essential submodule of the right ''R'' module ''R''''R''. The usual notations for essential extensions include the following two expressions: :N\subseteq_e M\, , and N\trianglelefteq M The dual notion of an essential submodule is that of superfluous submodule (or small submodule). A submodule ''N'' is superfluous if for any other submodule ''H'', :N+H=M\, implies that H=M\,. The usual notations for s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Proof
Proof most often refers to: * Proof (truth), argument or sufficient evidence for the truth of a proposition * Alcohol proof, a measure of an alcoholic drink's strength Proof may also refer to: Mathematics and formal logic * Formal proof, a construct in proof theory * Mathematical proof, a convincing demonstration that some mathematical statement is necessarily true * Proof complexity, computational resources required to prove statements * Proof procedure, method for producing proofs in proof theory * Proof theory, a branch of mathematical logic that represents proofs as formal mathematical objects * Statistical proof, demonstration of degree of certainty for a hypothesis Law and philosophy * Evidence, information which tends to determine or demonstrate the truth of a proposition * Evidence (law), tested evidence or a legal proof * Legal burden of proof, duty to establish the truth of facts in a trial * Philosophic burden of proof, obligation on a party in a dispute to provide ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ideal (ring Theory)
In ring theory, a branch of abstract algebra, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nathan Jacobson
Nathan Jacobson (October 5, 1910 – December 5, 1999) was an American mathematician. Biography Born Nachman Arbiser in Warsaw, Jacobson emigrated to America with his family in 1918. He graduated from the University of Alabama in 1930 and was awarded a doctorate in mathematics from Princeton University in 1934. While working on his thesis, ''Non-commutative polynomials and cyclic algebras'', he was advised by Joseph Wedderburn. Jacobson taught and researched at Bryn Mawr College (1935–1936), the University of Chicago (1936–1937), the University of North Carolina at Chapel Hill (1937–1943), and Johns Hopkins University (1943–1947) before joining Yale University in 1947. He remained at Yale until his retirement. He was a member of the National Academy of Sciences and the American Academy of Arts and Sciences. He served as president of the American Mathematical Society from 1971 to 1973, and was awarded their highest honour, the Leroy P. Steele prize for lifetime achievement, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Noncommutative Algebra
In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist ''a'' and ''b'' in the ring such that ''ab'' and ''ba'' are different. Equivalently, a ''noncommutative ring'' is a ring that is not a commutative ring. Noncommutative algebra is the part of ring theory devoted to study of properties of the noncommutative rings, including the properties that apply also to commutative rings. Sometimes the term ''noncommutative ring'' is used instead of ''ring'' to refer to a unspecified ring which is not necessarily commutative, and hence may be commutative. Generally, this is for emphasizing that the studied properties are not restricted to commutative rings, as, in many contexts, ''ring'' is used as a shortcut for ''commutative ring''. Although some authors do not assume that rings have a multiplicative identity, in this article we make that assumption unless stated otherwise. Examples Some examples of noncommutative rings: * The ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Michael Atiyah
Sir Michael Francis Atiyah (; 22 April 1929 – 11 January 2019) was a British-Lebanese mathematician specialising in geometry. His contributions include the Atiyah–Singer index theorem and co-founding topological K-theory. He was awarded the Fields Medal in 1966 and the Abel Prize in 2004. Life Atiyah grew up in Sudan and Egypt but spent most of his academic life in the United Kingdom at the University of Oxford and the University of Cambridge and in the United States at the Institute for Advanced Study. He was the President of the Royal Society (1990–1995), founding director of the Isaac Newton Institute (1990–1996), master of Trinity College, Cambridge (1990–1997), chancellor of the University of Leicester (1995–2005), and the President of the Royal Society of Edinburgh (2005–2008). From 1997 until his death, he was an honorary professor in the University of Edinburgh. Atiyah's mathematical collaborators included Raoul Bott, Friedrich Hirzebruch and Isadore Sin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]