NP-intermediate
   HOME





NP-intermediate
In computational complexity, problems that are in the complexity class NP but are neither in the class P nor NP-complete are called NP-intermediate, and the class of such problems is called NPI. Ladner's theorem, shown in 1975 by Richard E. Ladner, is a result asserting that, if P ≠ NP, then NPI is not empty; that is, NP contains problems that are neither in P nor NP-complete. Since it is also true that if NPI problems exist, then P ≠ NP, it follows that P = NP if and only if NPI is empty. Under the assumption that P ≠ NP, Ladner explicitly constructs a problem in NPI, although this problem is artificial and otherwise uninteresting. It is an open question whether any "natural" problem has the same property: Schaefer's dichotomy theorem provides conditions under which classes of constrained Boolean satisfiability problems cannot be in NPI. Some problems that are considered good candidates for being NP-intermediate are the graph isomorphism problem, and decision versions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

P Versus NP Problem
The P versus NP problem is a major unsolved problem in theoretical computer science. Informally, it asks whether every problem whose solution can be quickly verified can also be quickly solved. Here, "quickly" means an algorithm exists that solves the task and runs in polynomial time (as opposed to, say, exponential time), meaning the task completion time is bounded above by a polynomial function on the size of the input to the algorithm. The general class of questions that some algorithm can answer in polynomial time is " P" or "class P". For some questions, there is no known way to find an answer quickly, but if provided with an answer, it can be verified quickly. The class of questions where an answer can be ''verified'' in polynomial time is "NP", standing for "nondeterministic polynomial time".A nondeterministic Turing machine can move to a state that is not determined by the previous state. Such a machine could solve an NP problem in polynomial time by falling into t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computational Complexity Theory
In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and explores the relationships between these classifications. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying their computational complexity, i.e., the amount of resources needed to solve them, such as time and storage. Other measures of complexity are also used, such as the amount of communication (used in communication complexity), the number of logic gate, gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). O ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-polynomial Time
In computational complexity theory and the analysis of algorithms, an algorithm is said to take quasi-polynomial time if its time complexity is quasi-polynomially bounded. That is, there should exist a constant c such that the worst-case running time of the algorithm, on inputs of has an upper bound of the form 2^. The decision problems with quasi-polynomial time algorithms are natural candidates for being NP-intermediate, neither having polynomial time nor likely to be NP-hard. Complexity class The complexity class QP consists of all problems that have quasi-polynomial time algorithms. It can be defined in terms of DTIME as follows. :\mathsf = \bigcup_ \mathsf \left(2^\right) Examples An early example of a quasi-polynomial time algorithm was the Adleman–Pomerance–Rumely primality test. However, the problem of testing whether a number is a prime number has subsequently been shown to have a polynomial time algorithm, the AKS primality test. In some cases, quasi-polynomi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integer Factorization
In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number. For example, is a composite number because , but is a prime number because it cannot be decomposed in this way. If one of the factors is composite, it can in turn be written as a product of smaller factors, for example . Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer using mental or pen-and-paper arithmetic, the simplest method is trial division: checking if the number is divisible by prime numbers , , , and so on, up to the square root of . For larger numbers, especially when using a computer, various more sophis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Factoring Integers
In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number. For example, is a composite number because , but is a prime number because it cannot be decomposed in this way. If one of the factors is composite, it can in turn be written as a product of smaller factors, for example . Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer using mental or pen-and-paper arithmetic, the simplest method is trial division: checking if the number is divisible by prime numbers , , , and so on, up to the square root of . For larger numbers, especially when using a computer, various more sophistica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Schaefer's Dichotomy Theorem
In computational complexity theory, a branch of computer science, Schaefer's dichotomy theorem, proved by Thomas Jerome Schaefer, states necessary and sufficient conditions under which a finite set ''S'' of relations over the Boolean domain yields polynomial-time or NP-complete problems when the relations of ''S'' are used to constrain some of the propositional variables. It is called a dichotomy theorem because the complexity of the problem defined by ''S'' is either in P or is NP-complete, as opposed to one of the classes of intermediate complexity that is known to exist (assuming P ≠ NP) by Ladner's theorem. Special cases of Schaefer's dichotomy theorem include the NP-completeness of SAT (the Boolean satisfiability problem) and its two popular variants 1-in-3 SAT and not-all-equal 3SAT (often denoted by NAE-3SAT). In fact, for these two variants of SAT, Schaefer's dichotomy theorem shows that their monotone versions (where negations of variables are not allowed) are also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Isomorphism Problem
The graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic. The problem is not known to be solvable in polynomial time nor to be NP-complete, and therefore may be in the computational complexity class NP-intermediate. It is known that the graph isomorphism problem is in the low hierarchy of class NP, which implies that it is not NP-complete unless the polynomial time hierarchy collapses to its second level. At the same time, isomorphism for many special classes of graphs can be solved in polynomial time, and in practice graph isomorphism can often be solved efficiently. This problem is a special case of the subgraph isomorphism problem, which asks whether a given graph ''G'' contains a subgraph that is isomorphic to another given graph ''H''; this problem is known to be NP-complete. It is also known to be a special case of the non-abelian hidden subgroup problem over the symmetric group. In the area of image r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Tree
In computer science, a binary tree is a tree data structure in which each node has at most two children, referred to as the ''left child'' and the ''right child''. That is, it is a ''k''-ary tree with . A recursive definition using set theory is that a binary tree is a triple , where ''L'' and ''R'' are binary trees or the empty set and ''S'' is a singleton (a single–element set) containing the root. From a graph theory perspective, binary trees as defined here are arborescences. A binary tree may thus be also called a bifurcating arborescence, a term which appears in some early programming books before the modern computer science terminology prevailed. It is also possible to interpret a binary tree as an undirected, rather than directed graph, in which case a binary tree is an ordered, rooted tree. Some authors use rooted binary tree instead of ''binary tree'' to emphasize the fact that the tree is rooted, but as defined above, a binary tree is always rooted. In ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rotation Distance
In discrete mathematics and theoretical computer science, the rotation distance between two binary trees with the same number of nodes is the minimum number of tree rotations needed to reconfigure one tree into another. Because of a combinatorial equivalence between binary trees and triangulations of convex polygons, rotation distance is equivalent to the flip distance for triangulations of convex polygons. Rotation distance was first defined by Karel Čulík II and Derick Wood in 1982. Every two -node binary trees have a rotation distance of at most for all , and some pairs of trees have exactly this distance. The computational complexity of computing the rotation distance is unknown. Definition A binary tree is a structure consisting of a set of nodes, one of which is designated as the root node, in which each remaining node is either the ''left child'' or ''right child'' of some other node, its ''parent'', and in which following the parent links from any node eventually lea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cutting Stock Problem
In operations research, the cutting-stock problem is the problem of cutting standard-sized pieces of Inventory, stock material, such as paper rolls or sheet metal, into pieces of specified sizes while minimizing material wasted. It is an optimization (mathematics), optimization problem in mathematics that arises from applications in industry. In terms of Analysis of algorithms, computational complexity, the problem is an NP-hard problem reducible to the knapsack problem. The problem can be formulated as an integer linear programming problem. Illustration of one-dimensional cutting-stock problem A paper machine can produce an unlimited number of master (jumbo) rolls, each 5600 mm wide. The following 13 items must be cut, in the table below. The important thing about this kind of problem is that many different product units can be made from the same master roll, and the number of possible combinations is itself very large, in general, and not trivial to enumerate. The probl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Applied Mathematics
''Discrete Applied Mathematics'' is a peer-reviewed scientific journal covering algorithmic and applied areas of discrete mathematics. It is published by Elsevier and the editor-in-chief is Endre Boros (Rutgers University). The journal was split off from another Elsevier journal, ''Discrete Mathematics'', in 1979, with that journal's founder Peter Ladislaw Hammer as its founding editor-in-chief. Abstracting and indexing The journal is abstracted and indexing in: According to the ''Journal Citation Reports'', the journal has a 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a type of journal ranking. Journals with higher impact factor values are considered more prestigious or important within their field. The Impact Factor of a journa ... of 1.139. References External links *{{official website, http://www.journals.elsevier.com/discrete-applied-mathematics/ Discrete mathematics journals Academic journals established in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unknotting Problem
In mathematics, the unknotting problem is the problem of algorithmically recognizing the unknot, given some representation of a knot, e.g., a knot diagram. There are several types of unknotting algorithms. A major unresolved challenge is to determine if the problem admits a polynomial time algorithm; that is, whether the problem lies in the complexity class P (complexity), P. Computational complexity First steps toward determining the computational complexity were undertaken in proving that the problem is in larger complexity classes, which contain the class P. By using normal surfaces to describe the Seifert surfaces of a given knot, showed that the unknotting problem is in the complexity class NP (complexity), NP. claimed the weaker result that unknotting is in Arthur–Merlin protocol, AM ∩ co-AM; however, later they retracted this claim. In 2011, Greg Kuperberg proved that (assuming the generalized Riemann hypothesis) the unknotting problem is in co-NP, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]