HOME
*





Nuclear Operators Between Banach Spaces
In mathematics, a nuclear operator is a compact operator for which a trace may be defined, such that the trace is finite and independent of the choice of basis (at least on well behaved spaces; there are some spaces on which nuclear operators do not have a trace). Nuclear operators are essentially the same as trace-class operators, though most authors reserve the term "trace-class operator" for the special case of nuclear operators on Hilbert spaces. The general definition for Banach spaces was given by Grothendieck. This article presents both cases but concentrates on the general case of nuclear operators on Banach spaces; for more details about the important special case of nuclear (= trace-class) operators on Hilbert space, see the article Trace class. Compact operator An operator \mathcal L on a Hilbert space \mathcal H \mathcal : \mathcal \to \mathcal is compact if it can be written in the form \mathcal = \sum_^N \rho_n \langle f_n, \cdot \rangle g_n, where 1 \leq N \le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous (topology)
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category (mathematics)
In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. ''Category theory'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monoidal Category
In mathematics, a monoidal category (or tensor category) is a category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an object ''I'' that is both a left and right identity for ⊗, again up to a natural isomorphism. The associated natural isomorphisms are subject to certain coherence conditions, which ensure that all the relevant diagrams commute. The ordinary tensor product makes vector spaces, abelian groups, ''R''-modules, or ''R''-algebras into monoidal categories. Monoidal categories can be seen as a generalization of these and other examples. Every ( small) monoidal category may also be viewed as a "categorification" of an underlying monoid, namely the monoid whose elements are the isomorphism classes of the category's objects and whose binary operation is given by the category's tensor product. A rather different application, of which monoidal categories can be considered an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Convex Topological Vector Space
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals. Fréchet spaces are locally convex spaces that are completely metrizable (with a choice of complete metric). They are generalizations of Banach spaces, which are complete vector spaces with respect to a metric generated by a norm. History Metrizable topol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert–Schmidt Operator
In mathematics, a Hilbert–Schmidt operator, named after David Hilbert and Erhard Schmidt, is a bounded operator A \colon H \to H that acts on a Hilbert space H and has finite Hilbert–Schmidt norm \, A\, ^2_ \ \stackrel\ \sum_ \, Ae_i\, ^2_H, where \ is an orthonormal basis. The index set I need not be countable. However, the sum on the right must contain at most countably many non-zero terms, to have meaning. This definition is independent of the choice of the orthonormal basis. In finite-dimensional Euclidean space, the Hilbert–Schmidt norm \, \cdot\, _\text is identical to the matrix norm#Frobenius norm, Frobenius norm. , , ·, , is well defined The Hilbert–Schmidt norm does not depend on the choice of orthonormal basis. Indeed, if \_ and \_ are such bases, then \sum_i \, Ae_i\, ^2 = \sum_ \left, \langle Ae_i, f_j\rangle \^2 = \sum_ \left, \langle e_i, A^*f_j\rangle \^2 = \sum_j\, A^* f_j\, ^2. If e_i = f_i, then \sum_i \, Ae_i\, ^2 = \sum_i\, A^* e_i\, ^2. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number a+bi, is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Projective Tensor Product
The strongest locally convex topological vector space (TVS) topology on X \otimes Y, the tensor product of two locally convex TVSs, making the canonical map \cdot \otimes \cdot : X \times Y \to X \otimes Y (defined by sending (x, y) \in X \times Y to x \otimes y) continuous is called the projective topology or the π-topology. When X \otimes Y is endowed with this topology then it is denoted by X \otimes_ Y and called the projective tensor product of X and Y. Preliminaries Throughout let X, Y, and Z be topological vector spaces and L : X \to Y be a linear map. * L : X \to Y is a topological homomorphism or homomorphism, if it is linear, continuous, and L : X \to \operatorname L is an open map, where \operatorname L, the image of L, has the subspace topology induced by Y. ** If S \subseteq X is a subspace of X then both the quotient map X \to X / S and the canonical injection S \to X are homomorphisms. In particular, any linear map L : X \to Y can be canonically decomposed as f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bounded Linear Functional
In functional analysis and operator theory, a bounded linear operator is a linear transformation L : X \to Y between topological vector spaces (TVSs) X and Y that maps bounded subsets of X to bounded subsets of Y. If X and Y are normed vector spaces (a special type of TVS), then L is bounded if and only if there exists some M > 0 such that for all x \in X, \, Lx\, _Y \leq M \, x\, _X. The smallest such M is called the operator norm of L and denoted by \, L\, . A bounded operator between normed spaces is continuous and vice versa. The concept of a bounded linear operator has been extended from normed spaces to all topological vector spaces. Outside of functional analysis, when a function f : X \to Y is called "bounded" then this usually means that its image f(X) is a bounded subset of its codomain. A linear map has this property if and only if it is identically 0. Consequently, in functional analysis, when a linear operator is called "bounded" then it is never meant in this ab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Dual Space
In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V'', together with the vector space structure of pointwise addition and scalar multiplication by constants. The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the . When defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the ''continuous dual space''. Dual vector spaces find application in many branches of mathematics that use vector spaces, such as in tensor analysis with finite-dimensional vector spaces. When applied to vector spaces of functions (which are typically infinite-dimensional), dual spaces are used to describe measures, distributions, and Hilbert spaces. Consequently, the dual space is an important concept in functional analysis. Early terms for ''dual'' include ''polarer Raum'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compact Operator
In functional analysis, a branch of mathematics, a compact operator is a linear operator T: X \to Y, where X,Y are normed vector spaces, with the property that T maps bounded subsets of X to relatively compact subsets of Y (subsets with compact closure in Y). Such an operator is necessarily a bounded operator, and so continuous. Some authors require that X,Y are Banach, but the definition can be extended to more general spaces. Any bounded operator ''T'' that has finite rank is a compact operator; indeed, the class of compact operators is a natural generalization of the class of finite-rank operators in an infinite-dimensional setting. When ''Y'' is a Hilbert space, it is true that any compact operator is a limit of finite-rank operators, so that the class of compact operators can be defined alternatively as the closure of the set of finite-rank operators in the norm topology. Whether this was true in general for Banach spaces (the approximation property) was an unsolved qu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]