Nth-term Test
   HOME





Nth-term Test
In mathematics, the ''n''th-term test for divergenceKaczor p.336 is a simple test for the divergence of an infinite series:If \lim_ a_n \neq 0 or if the limit does not exist, then \sum_^\infty a_n diverges.Many authors do not name this test or give it a shorter name.For example, Rudin (p.60) states only the contrapositive form and does not name it. Brabenec (p.156) calls it just the ''n''th term test. Stewart (p.709) calls it the Test for Divergence. Spivak (p.473) calls it the Vanishing Condition. When testing if a series converges or diverges, this test is often checked first due to its ease of use. In the case of p-adic analysis the term test is a necessary and sufficient condition for convergence due to the non-Archimedean ultrametric triangle inequality. Usage Unlike stronger convergence tests, the term test cannot prove by itself that a series converges. In particular, the converse to the test is not true; instead all one can say is:If \lim_ a_n = 0, then \sum_^\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Divergent Series
In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit. If a series converges, the individual terms of the series must approach zero. Thus any series in which the individual terms do not approach zero diverges. However, convergence is a stronger condition: not all series whose terms approach zero converge. A counterexample is the harmonic series :1 + \frac + \frac + \frac + \frac + \cdots =\sum_^\infty\frac. The divergence of the harmonic series was proven by the medieval mathematician Nicole Oresme. In specialized mathematical contexts, values can be objectively assigned to certain series whose sequences of partial sums diverge, in order to make meaning of the divergence of the series. A ''summability method'' or ''summation method'' is a partial function from the set of series to values. For example, Cesàro summation assigns Grandi's divergent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infinite Series
In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions. The mathematical properties of infinite series make them widely applicable in other quantitative disciplines such as physics, computer science, statistics and finance. Among the Ancient Greeks, the idea that a potentially infinite summation could produce a finite result was considered paradoxical, most famously in Zeno's paradoxes. Nonetheless, infinite series were applied practically by Ancient Greek mathematicians including Archimedes, for instance in the quadrature of the parabola. The mathematical side of Zeno's paradoxes was resolved using the concept of a limit during the 17th century, especially through the early calculus of Isaac Newton. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-adic Analysis
In mathematics, ''p''-adic analysis is a branch of number theory that studies functions of ''p''-adic numbers. Along with the more classical fields of real and complex analysis, which deal, respectively, with functions on the real and complex numbers, it belongs to the discipline of mathematical analysis. The theory of complex-valued numerical functions on the ''p''-adic numbers is part of the theory of locally compact groups ( abstract harmonic analysis). The usual meaning taken for ''p''-adic analysis is the theory of ''p''-adic-valued functions on spaces of interest. Applications of ''p''-adic analysis have mainly been in number theory, where it has a significant role in diophantine geometry and diophantine approximation. Some applications have required the development of ''p''-adic functional analysis and spectral theory. In many ways ''p''-adic analysis is less subtle than classical analysis, since the ultrametric inequality means, for example, that convergence of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ultrametric Triangle Inequality
In mathematics, an ultrametric space is a metric space in which the triangle inequality is strengthened to d(x,z)\leq\max\left\ for all x, y, and z. Sometimes the associated metric is also called a non-Archimedean metric or super-metric. Formal definition An ultrametric on a set is a real-valued function :d\colon M \times M \rightarrow \mathbb (where denote the real numbers), such that for all : # ; # (''symmetry''); # ; # if then ; # (strong triangle inequality or ultrametric inequality). An ultrametric space is a pair consisting of a set together with an ultrametric on , which is called the space's associated distance function (also called a metric). If satisfies all of the conditions except possibly condition 4, then is called an ultrapseudometric on . An ultrapseudometric space is a pair consisting of a set and an ultrapseudometric on . In the case when is an Abelian group (written additively) and is generated by a length function \, \cdot\, (so that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convergence Tests
In mathematics, convergence tests are methods of testing for the convergence, conditional convergence, absolute convergence, interval of convergence or divergence of an infinite series \sum_^\infty a_n. List of tests Limit of the summand If the limit of the summand is undefined or nonzero, that is \lim_a_n \ne 0, then the series must diverge. In this sense, the partial sums are Cauchy only if this limit exists and is equal to zero. The test is inconclusive if the limit of the summand is zero. This is also known as the nth-term test, test for divergence, or the divergence test. Ratio test This is also known as d'Alembert's criterion. : Consider two limits \ell=\liminf_\left, \frac\ and L=\limsup_\left, \frac\. If \ell>1, the series diverges. If L 1. The case of p = 1, k = 1 yields the harmonic series, which diverges. The case of p = 2, k = 1 is the Basel problem and the series converges to \frac. In general, for p > 1, k = 1, the series is equal to the Riemann zeta funct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Convergent Series
In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence (a_1, a_2, a_3, \ldots) defines a series that is denoted :S=a_1 + a_2 + a_3 + \cdots=\sum_^\infty a_k. The th partial sum is the sum of the first terms of the sequence; that is, :S_n = a_1 +a_2 + \cdots + a_n = \sum_^n a_k. A series is convergent (or converges) if and only if the sequence (S_1, S_2, S_3, \dots) of its partial sums tends to a limit; that means that, when adding one a_k after the other ''in the order given by the indices'', one gets partial sums that become closer and closer to a given number. More precisely, a series converges, if and only if there exists a number \ell such that for every arbitrarily small positive number \varepsilon, there is a (sufficiently large) integer N such that for all n \ge N, :\left , S_n - \ell \right , 1 produce a convergent series: *: ++++++\cdots = . * Alternating the signs of reciprocals of powers o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Harmonic Series (mathematics)
In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions: \sum_^\infty\frac = 1 + \frac + \frac + \frac + \frac + \cdots. The first n terms of the series sum to approximately \ln n + \gamma, where \ln is the natural logarithm and \gamma\approx0.577 is the Euler–Mascheroni constant. Because the logarithm has arbitrarily large values, the harmonic series does not have a finite limit: it is a divergent series. Its divergence was proven in the 14th century by Nicole Oresme using a precursor to the Cauchy condensation test for the convergence of infinite series. It can also be proven to diverge by comparing the sum to an integral, according to the integral test for convergence. Applications of the harmonic series and its partial sums include Divergence of the sum of the reciprocals of the primes, Euler's proof that there are infinitely many prime numbers, the analysis of the coupon collector's problem on how many random trials are nee ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE