HOME
*





Normal Gravity
In geodesy and geophysics, theoretical gravity or normal gravity is an approximation of the true gravity on Earth's surface by means of a mathematical model representing Earth. The most common model of a smoothed Earth is a rotating Earth ellipsoid of revolution (i.e., a spheroid). Principles The type of gravity model used for the Earth depends upon the degree of fidelity required for a given problem. For many problems such as aircraft simulation, it may be sufficient to consider gravity to be a constant, defined as: :g=g_= based upon data from ''World Geodetic System 1984'' (WGS-84), where g is understood to be pointing 'down' in the local frame of reference. If it is desirable to model an object's weight on Earth as a function of latitude, one could use the following: :g=g_ - \tfrac(g_-g_) \cos\left(2\, \varphi \cdot \frac\right) where * g_ = * g_ = * g_ = * \varphi = latitude, between −90° and +90° Neither of these accounts for changes in gravity with changes in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geodesy
Geodesy ( ) is the Earth science of accurately measuring and understanding Earth's figure (geometric shape and size), orientation in space, and gravity. The field also incorporates studies of how these properties change over time and equivalent measurements for other planets (known as '' planetary geodesy''). Geodynamical phenomena, including crustal motion, tides and polar motion, can be studied by designing global and national control networks, applying space geodesy and terrestrial geodetic techniques and relying on datums and coordinate systems. The job title is geodesist or geodetic surveyor. History Definition The word geodesy comes from the Ancient Greek word ''geodaisia'' (literally, "division of Earth"). It is primarily concerned with positioning within the temporally varying gravitational field. Geodesy in the German-speaking world is divided into "higher geodesy" ( or ), which is concerned with measuring Earth on the global scale, and "practical geodes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


International Association Of Geodesy
) , merged = , successor = , formation = , founder = , founding_location = , extinction = , merger = , type = scholarly society , tax_id = , registration_id = , status = , purpose = advancement of geodesy , professional_title = , headquarters = Munich, , location = , location2 = , additional_location = , additional_location2= , coordinates = , origins = , region = worldwide , products = , services = , methods = , fields = , membership = , membership_year = , language = , owner = , sec_gen = , leader_title = , leader_name = , leader_title2 = , leader_name2 = , leader_title3 = , leader_name3 = , l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic computation, symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts. Current growth in computing power has enabled the use of more complex numerical analysis, providing detailed and realistic mathematical models in science and engineering. Examples of numerical analysis include: ordinary differential equations as found in celestial mechanics (predicting the motions of planets, stars and galaxies), numerical linear algebra in data analysis, and stochastic differential equations and Markov chains for simulating living ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semi-major And Semi-minor Axes
In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section. For the special case of a circle, the lengths of the semi-axes are both equal to the radius of the circle. The length of the semi-major axis of an ellipse is related to the semi-minor axis's length through the eccentricity and the semi-latus rectum \ell, as follows: The semi-major axis of a hyperbola is, depending on the convention, plus or minus one half of the distance between the two branches. Thus it is the distance from the center t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geophysical
Geophysics () is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. The term ''geophysics'' sometimes refers only to solid earth applications: Earth's shape; its gravitational and magnetic fields; its internal structure and composition; its dynamics and their surface expression in plate tectonics, the generation of magmas, volcanism and rock formation. However, modern geophysics organizations and pure scientists use a broader definition that includes the water cycle including snow and ice; fluid dynamics of the oceans and the atmosphere; electricity and magnetism in the ionosphere and magnetosphere and solar-terrestrial physics; and analogous problems associated with the Moon and other planets. Gutenberg, B., 1929, Lehrbuch der Geophysik. Leipzig. Berlin (Gebruder Borntraeger). Runcorn, S.K, (editor-in-chief), 1967, International ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eccentricity (mathematics)
In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. More formally two conic sections are similar if and only if they have the same eccentricity. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: * The eccentricity of a circle is zero. * The eccentricity of an ellipse which is not a circle is greater than zero but less than 1. * The eccentricity of a parabola is 1. * The eccentricity of a hyperbola is greater than 1. * The eccentricity of a pair of lines is \infty Definitions Any conic section can be defined as the locus of points whose distances to a point (the focus) and a line (the directrix) are in a constant ratio. That ratio is called the eccentricity, commonly denoted as . The eccentricity can also be defined in terms of the intersection of a plane and a double-napped cone associated with the conic section. If the cone is oriented ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carlo Somigliana
Carlo Somigliana (20 September 1860 – 20 June 1955) was an Italian mathematician and a classical mathematical physicist, faithful member of the school of Enrico Betti and Eugenio Beltrami. He made important contributions to linear elasticity: the Somigliana integral equation, analogous to Green's formula in potential theory, and the Somigliana dislocations are named after him. Other fields he contribute to include seismic wave propagation, gravimetry and glaciology. One of his ancestors was Alessandro Volta: precisely, the great Como physicist was an ancestor of Carlo's mother, Teresa Volta. Life and career Carlo Somigliana began his university studies in Pavia, where he was a student of Eugenio Beltrami. Later he moved to Pisa and had Betti among his teachers: in Pisa he established a lifelong friendship with Vito Volterra, who was one of his classmates, lasted until the death of the latter. He graduated from Scuola Normale Superiore di Pisa in 1881. In 1887 Somigliana beg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

WGS84
The World Geodetic System (WGS) is a standard used in cartography, geodesy, and satellite navigation including GPS. The current version, WGS 84, defines an Earth-centered, Earth-fixed coordinate system and a geodetic datum, and also describes the associated Earth Gravitational Model (EGM) and World Magnetic Model (WMM). The standard is published and maintained by the United States National Geospatial-Intelligence Agency. Definition The coordinate origin of WGS 84 is meant to be located at the Earth's center of mass; the uncertainty is believed to be less than . The WGS 84 meridian of zero longitude is the IERS Reference Meridian,European Organisation for the Safety of Air Navigation and IfEN: WGS 84 Implementation Manual, p. 13. 1998 5.3 arc seconds or east of the Greenwich meridian at the latitude of the Royal Observatory. (This is related to the fact that the local gravity field at Greenwich doesn't point exactly through the Earth's center of mass, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Helmert
Friedrich Robert Helmert (31 July 1843 – 15 June 1917) was a German geodesist and statistician with important contributions to the theory of errors. Career Helmert was born in Freiberg, Kingdom of Saxony. After schooling in Freiberg and Dresden, he entered the Polytechnische Schule, now Technische Universität, in Dresden to study engineering science in 1859. Finding him especially enthusiastic about geodesy, one of his teachers, Christian August Nagel, hired him while still a student to work on the triangulation of the Erzgebirge and the drafting of the trigonometric network for Saxony. In 1863 Helmert became Nagel's assistant on the Central European Arc Measurement. After a year's study of mathematics and astronomy Helmert obtained his doctor's degree from the University of Leipzig in 1867 for a thesis based on his work for Nagel. In 1870 Helmert became instructor and in 1872 professor at RWTH Aachen, the new Technical University in Aachen. At Aachen he wrote ''Die ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hayford Ellipsoid
The Hayford ellipsoid is a geodetic reference ellipsoid, named after the US geodesist John Fillmore Hayford (1868–1925), which was introduced in 1910. The Hayford ellipsoid was also referred to as the International ellipsoid 1924 after it had been adopted by the International Union of Geodesy and Geophysics IUGG in 1924, and was recommended for use all over the world. Many countries retained their previous ellipsoids. The Hayford ellipsoid is defined by its semi-major axis = and its flattening = 1:297.00. Unlike some of its predecessors, such as the Bessel ellipsoid ( = , = 1:299.15), which was a European ellipsoid, the Hayford ellipsoid also included measurements from North America, as well as other continents (to a lesser extent). It also included isostatic measurements to reduce plumbline divergences. Hayfords ellipsoid did not reach the accuracy of Helmerts ellipsoid published 1906 ( = , = 1:298.3). It has since been replaced as the "International ellipsoid" by the ne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pythagorean Identity
The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations between the sine and cosine functions. The identity is :\sin^2 \theta + \cos^2 \theta = 1. As usual, means (\sin\theta)^2. Proofs and their relationships to the Pythagorean theorem Proof based on right-angle triangles Any similar triangles have the property that if we select the same angle in all of them, the ratio of the two sides defining the angle is the same regardless of which similar triangle is selected, regardless of its actual size: the ratios depend upon the three angles, not the lengths of the sides. Thus for either of the similar right triangles in the figure, the ratio of its horizontal side to its hypotenuse is the same, namely cos θ. The elementary definitions of the sine and cosine functions in terms of the sides o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Double-angle Formula
In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles. They are distinct from triangle identities, which are identities potentially involving angles but also involving side lengths or other lengths of a triangle. These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity. Pythagorean identities The basic relationship between the sine and cosine is given by the Pythagorean identity: :\sin^2\theta + \cos^2\theta = 1, where \sin^2 \theta means (\sin \theta)^2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]