Noetherian
In mathematics, the adjective Noetherian is used to describe objects that satisfy an ascending or descending chain condition on certain kinds of subobjects, meaning that certain ascending or descending sequences of subobjects must have finite length. Noetherian objects are named after Emmy Noether, who was the first to study the ascending and descending chain conditions for rings. Specifically: * Noetherian group, a group that satisfies the ascending chain condition on subgroups. * Noetherian ring, a ring that satisfies the ascending chain condition on ideals. * Noetherian module, a module that satisfies the ascending chain condition on submodules. * More generally, an object in a category is said to be Noetherian if there is no infinitely increasing filtration of it by subobjects. A category is Noetherian if every object in it is Noetherian. * Noetherian relation, a binary relation that satisfies the ascending chain condition on its elements. * Noetherian topological spac ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Noetherian Ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals. If the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. Formally, every increasing sequence I_1\subseteq I_2 \subseteq I_3 \subseteq \cdots of left (or right) ideals has a largest element; that is, there exists an n such that I_=I_=\cdots. Equivalently, a ring is left-Noetherian (respectively right-Noetherian) if every left ideal (respectively right-ideal) is finitely generated. A ring is Noetherian if it is both left- and right-Noetherian. Noetherian rings are fundamental in both commutative and noncommutative ring theory since many rings that are encountered in mathematics are Noetherian (in particular the ring of integers, polynomial rings, and rings of algebraic integers in number fields), and many general theorems on rings rely heavily on the Noetherian property ( ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Noetherian Scheme
In algebraic geometry, a Noetherian scheme is a scheme that admits a finite covering by open affine subsets \operatorname A_i, where each A_i is a Noetherian ring. More generally, a scheme is locally Noetherian if it is covered by spectra of Noetherian rings. Thus, a scheme is Noetherian if and only if it is locally Noetherian and compact. As with Noetherian rings, the concept is named after Emmy Noether. It can be shown that, in a locally Noetherian scheme, if \operatorname A is an open affine subset, then ''A'' is a Noetherian ring; in particular, \operatorname A is a Noetherian scheme if and only if ''A'' is a Noetherian ring. For a locally Noetherian scheme ''X,'' the local rings \mathcal_ are also Noetherian rings. A Noetherian scheme is a Noetherian topological space. But the converse is false in general; consider, for example, the spectrum of a non-Noetherian valuation ring. The definitions extend to formal schemes. Properties and Noetherian hypotheses Having ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Noetherian Topological Space
In mathematics, a Noetherian topological space, named for Emmy Noether, is a topological space in which closed subsets satisfy the descending chain condition. Equivalently, we could say that the open subsets satisfy the ascending chain condition, since they are the complements of the closed subsets. The Noetherian property of a topological space can also be seen as a strong compactness condition, namely that every open subset of such a space is compact, and in fact it is equivalent to the seemingly stronger statement that ''every'' subset is compact. Definition A topological space X is called Noetherian if it satisfies the descending chain condition for closed subsets: for any sequence : Y_1 \supseteq Y_2 \supseteq \cdots of closed subsets Y_i of X, there is an integer m such that Y_m=Y_=\cdots. Properties * A topological space X is Noetherian if and only if every subspace of X is compact (i.e., X is hereditarily compact), and if and only if every open subset of X is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Emmy Noether
Amalie Emmy Noether (23 March 1882 – 14 April 1935) was a German mathematician who made many important contributions to abstract algebra. She also proved Noether's theorem, Noether's first and Noether's second theorem, second theorems, which are fundamental in mathematical physics. Noether was described by Pavel Alexandrov, Albert Einstein, Jean Dieudonné, Hermann Weyl and Norbert Wiener as the most important List of women in mathematics, woman in the history of mathematics. Transcribeonlineat the MacTutor History of Mathematics Archive. As one of the leading mathematicians of her time, she developed theories of ring (mathematics), rings, field (mathematics), fields, and algebras. In physics, Noether's theorem explains the connection between Symmetry (physics), symmetry and conservation laws. in . Noether was born to a Jewish family in the Franconian town of Erlangen; her father was the mathematician Max Noether. She originally planned to teach French and English after passin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Noetherian Module
In abstract algebra, a Noetherian module is a module that satisfies the ascending chain condition on its submodules, where the submodules are partially ordered by inclusion. Historically, Hilbert was the first mathematician to work with the properties of finitely generated submodules. He proved an important theorem known as Hilbert's basis theorem which says that any ideal in the multivariate polynomial ring of an arbitrary field is finitely generated. However, the property is named after Emmy Noether who was the first one to discover the true importance of the property. Characterizations and properties In the presence of the axiom of choice, two other characterizations are possible: *Any nonempty set ''S'' of submodules of the module has a maximal element (with respect to set inclusion). This is known as the maximum condition. *All of the submodules of the module are finitely generated. If ''M'' is a module and ''K'' a submodule, then ''M'' is Noetherian if and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Noetherian Relation
In mathematics, the adjective Noetherian is used to describe objects that satisfy an ascending or descending chain condition on certain kinds of subobjects, meaning that certain ascending or descending sequences of subobjects must have finite length. Noetherian objects are named after Emmy Noether, who was the first to study the ascending and descending chain conditions for rings. Specifically: * Noetherian group, a group that satisfies the ascending chain condition on subgroups. * Noetherian ring, a ring that satisfies the ascending chain condition on ideals. * Noetherian module, a module that satisfies the ascending chain condition on submodules. * More generally, an object in a category is said to be Noetherian if there is no infinitely increasing filtration of it by subobjects. A category is Noetherian if every object in it is Noetherian. * Noetherian relation, a binary relation that satisfies the ascending chain condition on its elements. * Noetherian topological space, a t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Noetherian Group
In mathematics, specifically group theory, a subgroup series of a group G is a chain of subgroups: :1 = A_0 \leq A_1 \leq \cdots \leq A_n = G where 1 is the trivial subgroup. Subgroup series can simplify the study of a group to the study of simpler subgroups and their relations, and several subgroup series can be invariantly defined and are important invariants of groups. A subgroup series is used in the subgroup method. Subgroup series are a special example of the use of filtrations in abstract algebra. Definition Normal series, subnormal series A subnormal series (also normal series, normal tower, subinvariant series, or just series) of a group ''G'' is a sequence of subgroups, each a normal subgroup of the next one. In a standard notation :1 = A_0\triangleleft A_1\triangleleft \cdots \triangleleft A_n = G. There is no requirement made that ''A''''i'' be a normal subgroup of ''G'', only a normal subgroup of ''A''''i'' +1. The quotient groups ''A''''i'' +1/''A' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ring (mathematics)
In mathematics, a ring is an algebraic structure consisting of a set with two binary operations called ''addition'' and ''multiplication'', which obey the same basic laws as addition and multiplication of integers, except that multiplication in a ring does not need to be commutative. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. A ''ring'' may be defined as a set that is endowed with two binary operations called ''addition'' and ''multiplication'' such that the ring is an abelian group with respect to the addition operator, and the multiplication operator is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors apply the term ''ring'' to a further generalization, often called a '' rng'', that omits the requirement for a multiplicative identity, and instead call the structure defi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Scheme (mathematics)
In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations and define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise '' Éléments de géométrie algébrique'' (EGA); one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem. Schemes elaborate the fundamental idea that an a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Artinian Ring
In mathematics, specifically abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are named after Emil Artin, who first discovered that the descending chain condition for ideals simultaneously generalizes finite rings and rings that are finite-dimensional vector spaces over fields. The definition of Artinian rings may be restated by interchanging the descending chain condition with an equivalent notion: the minimum condition. Precisely, a ring is left Artinian if it satisfies the descending chain condition on left ideals, right Artinian if it satisfies the descending chain condition on right ideals, and Artinian or two-sided Artinian if it is both left and right Artinian. For commutative rings the left and right definitions coincide, but in general they are distinct from each other. The Wedderburn–Artin theorem ch ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Noetherian Induction
In mathematics, a binary relation is called well-founded (or wellfounded or foundational) on a set or, more generally, a class if every non-empty subset has a minimal element with respect to ; that is, there exists an such that, for every , one does not have . In other words, a relation is well-founded if: (\forall S \subseteq X)\; \neq \varnothing \implies (\exists m \in S) (\forall s \in S) \lnot(s \mathrel m) Some authors include an extra condition that is set-like, i.e., that the elements less than any given element form a set. Equivalently, assuming the axiom of dependent choice, a relation is well-founded when it contains no infinite descending chains, meaning there is no infinite sequence of elements of such that for every natural number . In order theory, a partial order is called well-founded if the corresponding strict order is a well-founded relation. If the order is a total order then it is called a well-order. In set theory, a set is called a well-fou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ideal Of A Ring
In mathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |