Noether Identities
   HOME
*





Noether Identities
In mathematics, Noether identities characterize the degeneracy of a Lagrangian system. Given a Lagrangian system and its Lagrangian ''L'', Noether identities can be defined as a differential operator whose kernel contains a range of the Euler–Lagrange operator of ''L''. Any Euler–Lagrange operator obeys Noether identities which therefore are separated into the trivial and non-trivial ones. A Lagrangian ''L'' is called degenerate if the Euler–Lagrange operator of ''L'' satisfies non-trivial Noether identities. In this case Euler–Lagrange equations are not independent. Noether identities need not be independent, but satisfy first-stage Noether identities, which are subject to the second-stage Noether identities and so on. Higher-stage Noether identities also are separated into the trivial and non-trivial once. A degenerate Lagrangian is called reducible if there exist non-trivial higher-stage Noether identities. Yang–Mills gauge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lagrangian System
In mathematics, a Lagrangian system is a pair , consisting of a smooth fiber bundle and a Lagrangian density , which yields the Euler–Lagrange differential operator acting on sections of . In classical mechanics, many dynamical systems are Lagrangian systems. The configuration space of such a Lagrangian system is a fiber bundle over the time axis . In particular, if a reference frame is fixed. In classical field theory, all field systems are the Lagrangian ones. Lagrangians and Euler–Lagrange operators A Lagrangian density (or, simply, a Lagrangian) of order is defined as an -form, , on the -order jet manifold of . A Lagrangian can be introduced as an element of the variational bicomplex of the differential graded algebra of exterior forms on jet manifolds of . The coboundary operator of this bicomplex contains the variational operator which, acting on , defines the associated Euler–Lagrange operator . In coordinates Given bundle coordinates on a fiber bu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


BRST Formalism
BRST may refer to: * BRST Films, a Serbian video production company * BRST algorithm, an optimization algorithm suitable for finding the global optimum of black box functions * BRST quantization in Yang-Mills theories, a way to quantize a gauge-symmetric field theory * Brasília Summer Time Time in Brazil is calculated using standard time, and the country (including its offshore islands) is divided into four standard time zones: UTC−02:00, UTC−03:00, UTC−04:00 and UTC−05:00. Time zones Fernando de Noronha time (UTC−02 ... * Burst.com, from its stock ticker, now Democrasoft {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Equations
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology. Mainly the study of differential equations consists of the study of their solutions (the set of functions that satisfy each equation), and of the properties of their solutions. Only the simplest differential equations are solvable by explicit formulas; however, many properties of solutions of a given differential equation may be determined without computing them exactly. Often when a closed-form expression for the solutions is not available, solutions may be approximated numerically using computers. The theory of d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Calculus Of Variations
The calculus of variations (or Variational Calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions may exist. Such solutions are known as ''geodesics''. A related problem is posed by Fermat's principle: light follows the path of shortest optical length connecting two points, which depends up ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gennadi Sardanashvily
Gennadi Sardanashvily (russian: Генна́дий Алекса́ндрович Сарданашви́ли; March 13, 1950 – September 1, 2016) was a theoretical physicist, a principal research scientist of Moscow State University. Biography Gennadi Sardanashvily graduated from Moscow State University (MSU) in 1973, he was a Ph.D. student of the Department of Theoretical Physics ( MSU) in 1973–76, where he held a position in 1976. He attained his Ph.D. degree in physics and mathematics from MSU, in 1980, with Dmitri Ivanenko as his supervisor, and his D.Sc. degree in physics and mathematics from MSU, in 1998. Gennadi Sardanashvily was the founder and Managing Editor (2003 - 2013) of the International Journal of Geometric Methods in Modern Physics (IJGMMP). He was a member of Lepage Research Institute (Czech Republic). Research area Gennadi Sardanashvily research area is geometric method in classical and quantum mechanics and field theory, gravitation theory. H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jim Stasheff
James Dillon Stasheff (born January 15, 1936, New York City) is an American mathematician, a professor emeritus of mathematics at the University of North Carolina at Chapel Hill. He works in algebraic topology and algebra as well as their applications to physics. Biography Stasheff did his undergraduate studies in mathematics at the University of Michigan, graduating in 1956. Stasheff then began his graduate studies at Princeton University; his notes for a 1957 course by John Milnor on characteristic classes first appeared in mimeographed form and later in 1974 in revised form book with Stasheff as a co-author. After his second year at Princeton, he moved to Oxford University on a Marshall Scholarship. Two years later in 1961, with a pregnant wife, needing an Oxford degree to get reimbursed for his return trip to the US, and yet still feeling attached to Princeton, he split his thesis into two parts (one topological, the other algebraic) and earned two doctorates, a D.Phil. from Ox ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauge Symmetry (mathematics)
In mathematics, any Lagrangian system generally admits gauge symmetries, though it may happen that they are trivial. In theoretical physics, the notion of gauge symmetries depending on parameter functions is a cornerstone of contemporary field theory. A gauge symmetry of a Lagrangian L is defined as a differential operator on some vector bundle E taking its values in the linear space of (variational or exact) symmetries of L. Therefore, a gauge symmetry of L depends on sections of E and their partial derivatives. For instance, this is the case of gauge symmetries in classical field theory. Yang–Mills gauge theory and gauge gravitation theory exemplify classical field theories with gauge symmetries. Gauge symmetries possess the following two peculiarities. # Being Lagrangian symmetries, gauge symmetries of a Lagrangian satisfy Noether's first theorem, but the corresponding conserved current J^\mu takes a particular superpotential form J^\mu=W^\mu + d_\nu U^ where the fir ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Variational Bicomplex
In mathematics, the Lagrangian theory on fiber bundles is globally formulated in algebraic terms of the variational bicomplex, without appealing to the calculus of variations. For instance, this is the case of classical field theory on fiber bundles (covariant classical field theory). The variational bicomplex is a cochain complex of the differential graded algebra of exterior forms on jet manifolds of sections of a fiber bundle. Lagrangians and Euler–Lagrange operators on a fiber bundle are defined as elements of this bicomplex. Cohomology of the variational bicomplex leads to the global first variational formula and first Noether's theorem. Extended to Lagrangian theory of even and odd fields on graded manifolds, the variational bicomplex provides strict mathematical formulation of classical field theory in a general case of reducible degenerate Lagrangians and the Lagrangian BRST theory. See also * Calculus of variations *Lagrangian system *Jet bundle In differ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Emmy Noether
Amalie Emmy NoetherEmmy is the ''Rufname'', the second of two official given names, intended for daily use. Cf. for example the résumé submitted by Noether to Erlangen University in 1907 (Erlangen University archive, ''Promotionsakt Emmy Noether'' (1907/08, NR. 2988); reproduced in: ''Emmy Noether, Gesammelte Abhandlungen – Collected Papers,'' ed. N. Jacobson 1983; online facsimile aphysikerinnen.de/noetherlebenslauf.html). Sometimes ''Emmy'' is mistakenly reported as a short form for ''Amalie'', or misreported as "Emily". e.g. (, ; ; 23 March 1882 – 14 April 1935) was a German mathematician who made many important contributions to abstract algebra. She discovered Noether's First and Second Theorem, which are fundamental in mathematical physics. She was described by Pavel Alexandrov, Albert Einstein, Jean Dieudonné, Hermann Weyl and Norbert Wiener as the most important woman in the history of mathematics. As one of the leading mathematicians of her time, she developed some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Covariant Classical Field Theory
In mathematical physics, covariant classical field theory represents classical fields by sections of fiber bundles, and their dynamics is phrased in the context of a finite-dimensional space of fields. Nowadays, it is well known that jet bundles and the variational bicomplex are the correct domain for such a description. The Hamiltonian variant of covariant classical field theory is the covariant Hamiltonian field theory where momenta correspond to derivatives of field variables with respect to all world coordinates. Non-autonomous mechanics is formulated as covariant classical field theory on fiber bundles over the time axis ℝ. Examples Many important examples of classical field theories which are of interest in quantum field theory are given below. In particular, these are the theories which make up the Standard model of particle physics. These examples will be used in the discussion of the general mathematical formulation of classical field theory. Uncoupled theories * Scala ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Differential Operator
In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function (in the style of a higher-order function in computer science). This article considers mainly linear differential operators, which are the most common type. However, non-linear differential operators also exist, such as the Schwarzian derivative. Definition An order-m linear differential operator is a map A from a function space \mathcal_1 to another function space \mathcal_2 that can be written as: A = \sum_a_\alpha(x) D^\alpha\ , where \alpha = (\alpha_1,\alpha_2,\cdots,\alpha_n) is a multi-index of non-negative integers, , \alpha, = \alpha_1 + \alpha_2 + \cdots + \alpha_n, and for each \alpha, a_\alpha(x) is a function on some open domain in ''n''-dimensional space. The operator D^\alpha is interpreted as D^\alp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Faddeev–Popov Ghost
In physics, Faddeev–Popov ghosts (also called Faddeev–Popov gauge ghosts or Faddeev–Popov ghost fields) are extraneous fields which are introduced into gauge quantum field theories to maintain the consistency of the path integral formulation. They are named after Ludvig Faddeev and Victor Popov. A more general meaning of the word "ghost" in theoretical physics is discussed in Ghost (physics). Overcounting in Feynman path integrals The necessity for Faddeev–Popov ghosts follows from the requirement that quantum field theories yield unambiguous, non-singular solutions. This is not possible in the path integral formulation when a gauge symmetry is present since there is no procedure for selecting among physically equivalent solutions related by gauge transformation. The path integrals overcount field configurations corresponding to the same physical state; the measure of the path integrals contains a factor which does not allow obtaining various results directly from the a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]