HOME
*





Node2vec
node2vec is an algorithm to generate vector representations of nodes on a graph. The ''node2vec'' framework learns low-dimensional representations for nodes in a graph through the use of random walks through a graph starting at a target node. It is useful for a variety of machine learning applications. Besides reducing the engineering effort, representations learned by the algorithm lead to greater predictive power. ''node2vec'' follows the intuition that random walks through a graph can be treated like sentences in a corpus. Each node in a graph is treated like an individual word, and a random walk is treated as a sentence. By feeding these "sentences" into a skip-gram, or by using the continuous bag of words model paths found by random walks can be treated as sentences, and traditional data-mining techniques for documents can be used. The algorithm generalizes prior work which is based on rigid notions of network neighborhoods, and argues that the added flexibility in exploring ne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Struc2vec
struc2vec is a framework to generate node vector representations on a graph that preserve the structural identity. In contrast to ''node2vec'', that optimizes node embeddings so that nearby nodes in the graph have similar embedding, ''struc2vec'' captures the roles of nodes in a graph, even if structurally similar nodes are far apart in the graph. It learns low-dimensional representations for nodes in a graph, generating random walks through a constructed multi-layer graph starting at each graph node. It is useful for machine learning applications where the downstream application is more related with the structural equivalence of the nodes (e.g., it can be used to detect nodes in networks with similar functions, such as interns in the social network of a corporation). ''struc2vec'' identifies nodes that play a similar role based solely on the structure of the graph, for example computing the structural identity of individuals in social networks. In particular, ''struc2vec'' empl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by ''edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Random Walk
In mathematics, a random walk is a random process that describes a path that consists of a succession of random steps on some mathematical space. An elementary example of a random walk is the random walk on the integer number line \mathbb Z which starts at 0, and at each step moves +1 or −1 with equal probability. Other examples include the path traced by a molecule as it travels in a liquid or a gas (see Brownian motion), the search path of a foraging animal, or the price of a fluctuating stock and the financial status of a gambler. Random walks have applications to engineering and many scientific fields including ecology, psychology, computer science, physics, chemistry, biology, economics, and sociology. The term ''random walk'' was first introduced by Karl Pearson in 1905. Lattice random walk A popular random walk model is that of a random walk on a regular lattice, where at each step the location jumps to another site according to some probability distribution. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Machine Learning
Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine learning algorithms build a model based on sample data, known as training data, in order to make predictions or decisions without being explicitly programmed to do so. Machine learning algorithms are used in a wide variety of applications, such as in medicine, email filtering, speech recognition, agriculture, and computer vision, where it is difficult or unfeasible to develop conventional algorithms to perform the needed tasks.Hu, J.; Niu, H.; Carrasco, J.; Lennox, B.; Arvin, F.,Voronoi-Based Multi-Robot Autonomous Exploration in Unknown Environments via Deep Reinforcement Learning IEEE Transactions on Vehicular Technology, 2020. A subset of machine learning is closely related to computational statistics, which focuses on making pred ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


N-gram
In the fields of computational linguistics and probability, an ''n''-gram (sometimes also called Q-gram) is a contiguous sequence of ''n'' items from a given sample of text or speech. The items can be phonemes, syllables, letters, words or base pairs according to the application. The ''n''-grams typically are collected from a text or speech corpus. When the items are words, -grams may also be called ''shingles''. Using Latin numerical prefixes, an ''n''-gram of size 1 is referred to as a "unigram"; size 2 is a " bigram" (or, less commonly, a "digram"); size 3 is a " trigram". English cardinal numbers are sometimes used, e.g., "four-gram", "five-gram", and so on. In computational biology, a polymer or oligomer of a known size is called a ''k''-mer instead of an ''n''-gram, with specific names using Greek numerical prefixes such as "monomer", "dimer", "trimer", "tetramer", "pentamer", etc., or English cardinal numbers, "one-mer", "two-mer", "three-mer", etc. App ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bag-of-words Model
The bag-of-words model is a simplifying representation used in natural language processing and information retrieval (IR). In this model, a text (such as a sentence or a document) is represented as the bag (multiset) of its words, disregarding grammar and even word order but keeping multiplicity. The bag-of-words model has also been used for computer vision. The bag-of-words model is commonly used in methods of document classification where the (frequency of) occurrence of each word is used as a feature for training a classifier. An early reference to "bag of words" in a linguistic context can be found in Zellig Harris's 1954 article on ''Distributional Structure''. The Bag-of-words model is one example of a Vector space model. Example implementation The following models a text document using bag-of-words. Here are two simple text documents: (1) John likes to watch movies. Mary likes movies too. (2) Mary also likes to watch football games. Based on these two te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Neural Network
A graph neural network (GNN) belongs to a class of artificial neural networks for processing data that can be represented as graphs. In the more general subject of "geometric deep learning", certain existing neural network architectures can be interpreted as GNNs operating on suitably defined graphs. A convolutional neural network layer, in the context of computer vision, can be seen as a GNN applied to graphs whose nodes are pixels and only adjacent pixels are connected by edges in the graph. A transformer layer, in natural language processing, can be seen as a GNN applied to complete graphs whose nodes are words or tokens in a passage of natural language text. The key design element of GNNs is the use of ''pairwise message passing'', such that graph nodes iteratively update their representations by exchanging information with their neighbors. Since their inception, several different GNN architectures have been proposed, which implement different flavors of message passing, s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]