Newton Polygon
In mathematics, the Newton polygon is a tool for understanding the behaviour of polynomials over local fields, or more generally, over ultrametric fields. In the original case, the local field of interest was ''essentially'' the field of formal Laurent series in the indeterminate ''X'', i.e. the field of fractions of the formal power series ring K X, over K, where K was the real number or complex number field. This is still of considerable utility with respect to Puiseux expansions. The Newton polygon is an effective device for understanding the leading terms aX^r of the power series expansion solutions to equations P(F(X)) = 0 where P is a polynomial with coefficients in K /math>, the polynomial ring; that is, implicitly defined algebraic functions. The exponents r here are certain rational numbers, depending on the branch chosen; and the solutions themselves are power series in K Y with Y = X^ for a denominator d corresponding to the branch. The Newton polygon gives an effective, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elliptic Curve
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions for: :y^2 = x^3 + ax + b for some coefficients and in . The curve is required to be non-singular, which means that the curve has no cusps or self-intersections. (This is equivalent to the condition , that is, being square-free in .) It is always understood that the curve is really sitting in the projective plane, with the point being the unique point at infinity. Many sources define an elliptic curve to be simply a curve given by an equation of this form. (When the coefficient field has characteristic 2 or 3, the above equation is not quite general enough to include all non-singular cubic cu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ramification Theory
In geometry, ramification is 'branching out', in the way that the square root function, for complex numbers, can be seen to have two ''branches'' differing in sign. The term is also used from the opposite perspective (branches coming together) as when a covering map degenerates at a point of a space, with some collapsing of the fibers of the mapping. In complex analysis In complex analysis, the basic model can be taken as the ''z'' → ''z''''n'' mapping in the complex plane, near ''z'' = 0. This is the standard local picture in Riemann surface theory, of ramification of order ''n''. It occurs for example in the Riemann–Hurwitz formula for the effect of mappings on the genus. See also branch point. In algebraic topology In a covering map the Euler–Poincaré characteristic should multiply by the number of sheets; ramification can therefore be detected by some dropping from that. The ''z'' → ''z''''n'' mapping shows this as a local p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Closure
In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky (1972) pp.74-76 or the weaker ultrafilter lemma, it can be shown that every field has an algebraic closure, and that the algebraic closure of a field ''K'' is unique up to an isomorphism that fixes every member of ''K''. Because of this essential uniqueness, we often speak of ''the'' algebraic closure of ''K'', rather than ''an'' algebraic closure of ''K''. The algebraic closure of a field ''K'' can be thought of as the largest algebraic extension of ''K''. To see this, note that if ''L'' is any algebraic extension of ''K'', then the algebraic closure of ''L'' is also an algebraic closure of ''K'', and so ''L'' is contained within the algebraic closure of ''K''. The algebraic closure of ''K'' is also the smallest algebraically closed fiel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elementary Symmetric Function
In mathematics, specifically in commutative algebra, the elementary symmetric polynomials are one type of basic building block for symmetric polynomials, in the sense that any symmetric polynomial can be expressed as a polynomial in elementary symmetric polynomials. That is, any symmetric polynomial is given by an expression involving only additions and multiplication of constants and elementary symmetric polynomials. There is one elementary symmetric polynomial of degree in variables for each positive integer , and it is formed by adding together all distinct products of distinct variables. Definition The elementary symmetric polynomials in variables , written for , are defined by :\begin e_1 (X_1, X_2, \dots,X_n) &= \sum_ X_j,\\ e_2 (X_1, X_2, \dots,X_n) &= \sum_ X_j X_k,\\ e_3 (X_1, X_2, \dots,X_n) &= \sum_ X_j X_k X_l,\\ \end and so forth, ending with : e_n (X_1, X_2, \dots,X_n) = X_1 X_2 \cdots X_n. In general, for we define : e_k (X_1 , \ldots , X_n )=\sum_ X ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Diagram Of A Newton Polygon Convex Hull
A diagram is a symbolic representation of information using visualization techniques. Diagrams have been used since prehistoric times on walls of caves, but became more prevalent during the Enlightenment. Sometimes, the technique uses a three-dimensional visualization which is then projected onto a two-dimensional surface. The word ''graph'' is sometimes used as a synonym for diagram. Overview The term "diagram" in its commonly used sense can have a general or specific meaning: * ''visual information device'' : Like the term "illustration", "diagram" is used as a collective term standing for the whole class of technical genres, including graphs, technical drawings and tables. * ''specific kind of visual display'' : This is the genre that shows qualitative data with shapes that are connected by lines, arrows, or other visual links. In science the term is used in both ways. For example, Anderson (1997) stated more generally: "diagrams are pictorial, yet abstract, representat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Newton Polytope
In mathematics, the Newton polytope is an integral polytope associated with a multivariate polynomial. It can be used to analyze the polynomial's behavior when specific variables are considered negligible relative to the others. Specifically, given a vector \mathbf=(x_1,\ldots,x_n) of variables and a finite family (\mathbf_k)_k of pairwise distinct vectors from \mathbb^n each encoding the exponents within a monomial, consider the multivariate polynomial :f(\mathbf)=\sum_k c_k\mathbf^ where we use the shorthand notation (x_1,\ldots,x_n)^ for the monomial x_1^x_2^\cdots x_n^. Then the Newton polytope associated to f is the convex hull of the vectors \mathbf_k; that is :\operatorname(f)=\left\\!. The Newton polytope satisfies the following homomorphism-type property: :\operatorname(fg)=\operatorname(f)+\operatorname(g) where the addition is in the sense of Minkowski. Newton polytopes are the central object of study in tropical geometry and characterize the Gröbner bases for a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Henselian Ring
In mathematics, a Henselian ring (or Hensel ring) is a local ring in which Hensel's lemma holds. They were introduced by , who named them after Kurt Hensel. Azumaya originally allowed Henselian rings to be non-commutative, but most authors now restrict them to be commutative. Some standard references for Hensel rings are , , and . Definitions In this article rings will be assumed to be commutative, though there is also a theory of non-commutative Henselian rings. * A local ring ''R'' with maximal ideal ''m'' is called Henselian if Hensel's lemma holds. This means that if ''P'' is a monic polynomial in ''R'' 'x'' then any factorization of its image ''P'' in (''R''/''m'') 'x''into a product of coprime monic polynomials can be lifted to a factorization in ''R'' 'x'' * A local ring is Henselian if and only if every finite ring extension is a product of local rings. * A Henselian local ring is called strictly Henselian if its residue field is separably closed. * By abuse of termino ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eisenstein Criterion
In mathematics, Eisenstein's criterion gives a sufficient condition for a polynomial with integer coefficients to be irreducible over the rational numbers – that is, for it to not be factorizable into the product of non-constant polynomials with rational coefficients. This criterion is not applicable to all polynomials with integer coefficients that are irreducible over the rational numbers, but it does allow in certain important cases for irreducibility to be proved with very little effort. It may apply either directly or after transformation of the original polynomial. This criterion is named after Gotthold Eisenstein. In the early 20th century, it was also known as the Schönemann–Eisenstein theorem because Theodor Schönemann was the first to publish it. Criterion Suppose we have the following polynomial with integer coefficients. : Q(x)=a_nx^n+a_x^+\cdots+a_1x+a_0 If there exists a prime number such that the following three conditions all apply: * divides each for , ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Line Segment
In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between its endpoints. A closed line segment includes both endpoints, while an open line segment excludes both endpoints; a half-open line segment includes exactly one of the endpoints. In geometry, a line segment is often denoted using a line above the symbols for the two endpoints (such as \overline). Examples of line segments include the sides of a triangle or square. More generally, when both of the segment's end points are vertices of a polygon or polyhedron, the line segment is either an edge (geometry), edge (of that polygon or polyhedron) if they are adjacent vertices, or a diagonal. When the end points both lie on a curve (such as a circle), a line segment is called a chord (geometry), chord (of that curve). In real or complex vector spa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ray (geometry)
In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist in two, three, or higher dimension spaces. The word ''line'' may also refer to a line segment in everyday life, which has two points to denote its ends. Lines can be referred by two points that lay on it (e.g., \overleftrightarrow) or by a single letter (e.g., \ell). Euclid described a line as "breadthless length" which "lies evenly with respect to the points on itself"; he introduced several postulates as basic unprovable properties from which he constructed all of geometry, which is now called Euclidean geometry to avoid confusion with other geometries which have been introduced since the end of the 19th century (such as non-Euclidean, projective and affine geometry). In modern mathematics, given the multitude of geometries, the concept of a line is closely tied to the way the geometry is described. For instance, in analytic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convex Hull
In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset. Convex hulls of open sets are open, and convex hulls of compact sets are compact. Every compact convex set is the convex hull of its extreme points. The convex hull operator is an example of a closure operator, and every antimatroid can be represented by applying this closure operator to finite sets of points. The algorithmic problems of finding the convex hull of a finite set of points in the plane or other low-dimensional Euclidean spaces, and its dual problem of intersecting half-spaces, are fundamental problems of com ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |