HOME
*



picture info

Neville Theta Function
In mathematics, the Neville theta functions, named after Eric Harold Neville, are defined as follows: : \theta_c(z,m)=\frac \,\, \sum _^\infty (q(m))^ \cos \left(\frac \right) : \theta_d(z,m)=\frac\,\,\left( 1+2\,\sum _^\infty (q(m))^ \cos \left( \frac \right) \right) : \theta_n(z, m) =\frac \,\,\left( 1+2\sum _^\infty (-1)^k (q(m))^ \cos \left(\frac \right) \right) : \theta_s(z, m)=\frac\,\, \sum_^\infty (-1)^k (q(m))^ \sin\left(\frac \right) where: ''K(m)'' is the complete elliptic integral of the first kind, K'(m)=K(1-m), and q(m)=e^ is the elliptic nome. Note that the functions ''θp(z,m)'' are sometimes defined in terms of the nome ''q(m)'' and written ''θp(z,q)'' (e.g. NIST). The functions may also be written in terms of the ''τ'' parameter ''θp(z, τ)'' where q=e^. Relationship to other functions The Neville theta functions may be expressed in terms of the Jacobi theta functions :\theta_s(z, \tau)=\theta_3^2(0, \tau)\theta_1(z', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Eric Harold Neville
Eric Harold Neville, known as E. H. Neville (1 January 1889 London, England – 22 August 1961 Reading, Berkshire, England) was an English mathematician. A heavily fictionalised portrayal of his life is rendered in the 2007 novel '' The Indian Clerk''. He is the one who convinced Srinivasa Ramanujan to come to England. Early life and education Eric Harold Neville was born in London on 1 January 1889. He attended the William Ellis School, where his mathematical abilities were recognised and encouraged by his mathematics teacher, T. P. Nunn. In 1907, he entered Trinity College, Cambridge. He graduated second wrangler two years later. He was elected to a Fellowship at Trinity College. While there he became acquainted with other Cambridge fellows, most notably Bertrand Russell and G. H. Hardy. In 1913 Neville married Alice Farnfield (1875-1956); they had a son Eric Russell Neville in 1914 who died before his first birthday. Neville remained married to Alice until her de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elliptic Integral
In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (). Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse. Modern mathematics defines an "elliptic integral" as any function which can be expressed in the form f(x) = \int_^ R \left(t, \sqrt \right) \, dt, where is a rational function of its two arguments, is a polynomial of degree 3 or 4 with no repeated roots, and is a constant. In general, integrals in this form cannot be expressed in terms of elementary functions. Exceptions to this general rule are when has repeated roots, or when contains no odd powers of or if the integral is pseudo-elliptic. However, with the appropriate reduction formula, every elliptic integral can be brought into a form that involves integrals over rational functions and the three Legend ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jacobi Elliptic Functions
In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum (see also pendulum (mathematics)), as well as in the design of electronic elliptic filters. While trigonometry, trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation \operatorname for \sin. The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by . Carl Friedrich Gauss had already studied special Jacobi elliptic functions in 1797, the lemniscate elliptic functions in particular, but his work was published much later. Overview There are twelve Jacob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematica
Wolfram Mathematica is a software system with built-in libraries for several areas of technical computing that allow machine learning, statistics, symbolic computation, data manipulation, network analysis, time series analysis, NLP, optimization, plotting functions and various types of data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other programming languages. It was conceived by Stephen Wolfram, and is developed by Wolfram Research of Champaign, Illinois. The Wolfram Language is the programming language used in ''Mathematica''. Mathematica 1.0 was released on June 23, 1988 in Champaign, Illinois and Santa Clara, California. __TOC__ Notebook interface Wolfram Mathematica (called ''Mathematica'' by some of its users) is split into two parts: the kernel and the front end. The kernel interprets expressions (Wolfram Language code) and returns result expressions, which can then be displayed by the front end. The origin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Special Functions
Special functions are particular mathematical functions that have more or less established names and notations due to their importance in mathematical analysis, functional analysis, geometry, physics, or other applications. The term is defined by consensus, and thus lacks a general formal definition, but the List of mathematical functions contains functions that are commonly accepted as special. Tables of special functions Many special functions appear as solutions of differential equations or integrals of elementary functions. Therefore, tables of integrals usually include descriptions of special functions, and tables of special functions include most important integrals; at least, the integral representation of special functions. Because symmetries of differential equations are essential to both physics and mathematics, the theory of special functions is closely related to the theory of Lie groups and Lie algebras, as well as certain topics in mathematical physics. Symbolic c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theta Functions
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory. The most common form of theta function is that occurring in the theory of elliptic functions. With respect to one of the complex variables (conventionally called ), a theta function has a property expressing its behavior with respect to the addition of a period of the associated elliptic functions, making it a quasiperiodic function. In the abstract theory this quasiperiodicity comes from the cohomology class of a line bundle on a complex torus, a condition of descent. One interpretation of theta functions when dealing with the heat equation is that "a theta function is a special function that describes the evolution of temperature on a segment domain subject to certain boundary conditions". Throughout this article, (e^)^ should be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elliptic Functions
In the mathematical field of complex analysis, elliptic functions are a special kind of meromorphic functions, that satisfy two periodicity conditions. They are named elliptic functions because they come from elliptic integrals. Originally those integrals occurred at the calculation of the arc length of an ellipse. Important elliptic functions are Jacobi elliptic functions and the Weierstrass \wp-function. Further development of this theory led to hyperelliptic functions and modular forms. Definition A meromorphic function is called an elliptic function, if there are two \mathbb- linear independent complex numbers \omega_1,\omega_2\in\mathbb such that : f(z + \omega_1) = f(z) and f(z + \omega_2) = f(z), \quad \forall z\in\mathbb. So elliptic functions have two periods and are therefore also called ''doubly periodic''. Period lattice and fundamental domain Iff is an elliptic function with periods \omega_1,\omega_2 it also holds that : f(z+\gamma)=f(z) for every lin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]