HOME
*





Network Allocation Vector
The network allocation vector (NAV) is a virtual carrier-sensing mechanism used with wireless network protocols such as IEEE 802.11 (Wi-Fi) and IEEE 802.16 (WiMax). The virtual carrier-sensing is a logical abstraction which limits the need for physical carrier-sensing at the air interface in order to save power. The MAC layer frame headers contain a ''duration'' field that specifies the transmission time required for the frame, in which time the medium will be busy. The stations listening on the wireless medium read the ''Duration'' field and set their NAV, which is an indicator for a station on how long it must defer from accessing the medium. The NAV may be thought of as a counter, which counts down to zero at a uniform rate. When the counter is zero, the virtual carrier-sensing indication is that the medium is idle; when nonzero, the indication is busy. The medium shall be determined to be busy when the station (STA) is transmitting. In IEEE 802.11, the NAV represents the num ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carrier-sense Multiple Access
Carrier-sense multiple access (CSMA) is a medium access control (MAC) protocol in which a node verifies the absence of other Network traffic, traffic before Transmission (telecommunications), transmitting on a shared transmission medium, such as an Bus (computing), electrical bus or a band of the electromagnetic spectrum. Under CSMA, a transmitter uses a carrier-sense mechanism to determine whether another transmission is in progress before initiating a transmission. That is, it tries to detect the presence of a carrier signal from another node before attempting to transmit. If a carrier is sensed, the node waits for the transmission in progress to end before initiating its own transmission. Using CSMA, multiple nodes may, in turn, send and receive on the same medium. Transmissions by one node are generally received by all other nodes connected to the medium. Variations on basic CSMA include addition of Collision (telecommunications), collision-avoidance (CSMA/CA), collision-detec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


IEEE 802
IEEE 802 is a family of Institute of Electrical and Electronics Engineers (IEEE) standards for local area networks (LAN), personal area network (PAN), and metropolitan area networks (MAN). The IEEE 802 LAN/MAN Standards Committee (LMSC) maintains these standards. The IEEE 802 family of standards has had twenty-four members, numbered 802.1 through 802.24, with a working group of the LMSC devoted to each. However, not all of these working groups are currently active. The IEEE 802 standards are restricted to computer networks carrying variable-size packets, unlike cell relay networks, for example, in which data is transmitted in short, uniformly sized units called cells. Isochronous signal networks, in which data is transmitted as a steady stream of octets, or groups of octets, at regular time intervals, are also outside the scope of the IEEE 802 standards. The number 802 has no significance: it was simply the next number in the sequence that the IEEE used for standards projects. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wi-Fi
Wi-Fi () is a family of wireless network protocols, based on the IEEE 802.11 family of standards, which are commonly used for local area networking of devices and Internet access, allowing nearby digital devices to exchange data by radio waves. These are the most widely used computer networks in the world, used globally in home and small office networks to link desktop and laptop computers, tablet computers, smartphones, smart TVs, printers, and smart speakers together and to a wireless router to connect them to the Internet, and in wireless access points in public places like coffee shops, hotels, libraries and airports to provide visitors with Internet access for their mobile devices. ''Wi-Fi'' is a trademark of the non-profit Wi-Fi Alliance, which restricts the use of the term ''Wi-Fi Certified'' to products that successfully complete interoperability certification testing. the Wi-Fi Alliance consisted of more than 800 companies from around the world. over 3.05 billion ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

WiMax
Worldwide Interoperability for Microwave Access (WiMAX) is a family of wireless broadband communication standards based on the IEEE 802.16 set of standards, which provide physical layer (PHY) and media access control (MAC) options. The WiMAX Forum was formed in June 2001 to promote conformity and interoperability, including the definition of system profiles for commercial vendors. The forum describes WiMAX as "a standards-based technology enabling the delivery of last mile wireless broadband access as an alternative to cable and DSL". IEEE 802.16m or WirelessMAN-Advanced was a candidate for 4G, in competition with the LTE Advanced standard. WiMAX was initially designed to provide 30 to 40 megabit-per-second data rates, with the 2011 update providing up to 1 Gbit/s for fixed stations. WiMAX release 2.1, popularly branded as WiMAX 2+, is a backwards-compatible transition from previous WiMAX generations. It is compatible and interoperable with TD-LTE. Terminology WiM ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Media Access Control
In IEEE 802 LAN/MAN standards, the medium access control (MAC, also called media access control) sublayer is the layer that controls the hardware responsible for interaction with the wired, optical or wireless transmission medium. The MAC sublayer and the logical link control (LLC) sublayer together make up the data link layer. The LLC provides flow control and multiplexing for the logical link (i.e. EtherType, 802.1Q VLAN tag etc), while the MAC provides flow control and multiplexing for the transmission medium. These two sublayers together correspond to layer 2 of the OSI model. For compatibility reasons, LLC is optional for implementations of IEEE 802.3 (the frames are then "raw"), but compulsory for implementations of other IEEE 802 physical layer standards. Within the hierarchy of the OSI model and IEEE 802 standards, the MAC sublayer provides a control abstraction of the physical layer such that the complexities of physical link control are invisible to the LLC and upper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Microsecond
A microsecond is a unit of time in the International System of Units (SI) equal to one millionth (0.000001 or 10−6 or ) of a second. Its symbol is μs, sometimes simplified to us when Unicode is not available. A microsecond is equal to 1000 nanoseconds or of a millisecond. Because the next SI prefix is 1000 times larger, measurements of 10−5 and 10−4 seconds are typically expressed as tens or hundreds of microseconds. Examples * 1 microsecond (1 μs) – cycle time for frequency (1 MHz), the inverse unit. This corresponds to radio wavelength 300 m (AM medium wave band), as can be calculated by multiplying 1 μs by the speed of light (approximately ). * 1 microsecond – the length of time of a high-speed, commercial strobe light flash (see air-gap flash). * 1 microsecond – protein folding takes place on the order of microseconds. * 1.8 microseconds – the amount of time subtracted from the Earth's day as a result of the 2011 Japanese earthquake. * 2 m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




SIFS
Short Interframe Space (SIFS), is the amount of time in microseconds required for a wireless interface to process a received frame and to respond with a response frame. It is the difference in time between the first symbol of the response frame in the air and the last symbol of the received frame in the air. A SIFS time consists of the delay in receiver RF, PLCP delay and the MAC processing delay, which depends on the physical layer used. In IEEE 802.11 networks, SIFS is the interframe spacing prior to transmission of an acknowledgment, a Clear To Send (CTS) frame, a block ack frame that is an immediate response to either a block ack request frame or an A-MPDU, the second or subsequent MPDU of a fragment burst, a station responding to any polling a by point coordination function and during contention free periods of point coordination function. Implications for Software Radio Because most Software-Defined Radios use a host computer for processing, the SIFS impose ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Station (networking)
In IEEE 802.11 (Wi-Fi) terminology, a station (abbreviated as STA) is a device that has the capability to use the 802.11 protocol. For example, a station may be a laptop, a desktop PC, PDA, access point or Wi-Fi phone. An STA may be fixed, mobile or portable. Generally, in wireless networking terminology, a station, a wireless client and a node are often used interchangeably, with no strict distinction existing between these terms. A station may also be referred to as a transmitter or receiver based on its transmission characteristics. IEEE 802.11-2007 formally defines station as: ''Any device that contains an IEEE 802.11-conformant media access control (MAC) and physical layer (PHY) interface to the wireless medium (WM).'' See also *Basic Service Set *Service set identifier In IEEE 802.11 wireless local area networking standards (including Wi-Fi), a service set is a group of wireless network devices which share a ''service set identifier'' (''SSID'')—typically the natural lang ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carrier Sense Multiple Access With Collision Avoidance
Carrier-sense multiple access with collision avoidance (CSMA/CA) in computer networking, is a network multiple access method in which carrier sensing is used, but nodes attempt to avoid collisions by beginning transmission only after the channel is sensed to be "idle". When they do transmit, nodes transmit their packet data in its entirety. It is particularly important for wireless networks, where the alternative with collision detection CSMA/CD, is not possible due to wireless transmitters desensing (turning off) their receivers during packet transmission. CSMA/CA is unreliable due to the hidden node problem. CSMA/CA is a protocol that operates in the data link layer (Layer 2) of the OSI model. Details Collision avoidance is used to improve the performance of the CSMA method by attempting to divide the channel somewhat equally among all transmitting nodes within the collision domain. # Carrier Sense: prior to transmitting, a node first listens to the shared medium (such as l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Distributed Coordination Function
Distributed coordination function (DCF) is the fundamental medium access control (MAC) technique of the IEEE 802.11-based WLAN standard (including Wi-Fi). DCF employs a carrier-sense multiple access with collision avoidance (CSMA/CA) with the binary exponential backoff algorithm. DCF requires a station wishing to transmit to listen for the channel status for a DIFS interval. If the channel is found busy during the DIFS interval, the station defers its transmission. In a network where a number of stations contend for the wireless medium, if multiple stations sense the channel busy and defer their access, they will also virtually simultaneously find that the channel is released and then try to seize the channel. As a result, collisions may occur. In order to avoid such collisions, DCF also specifies random backoff, which forces a station to defer its access to the channel for an extra period. The length of the backoff period is determined by the following equation: \mathrm = \math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Point Coordination Function
Point coordination function (PCF) is a media access control (MAC) technique used in IEEE 802.11 based WLANs, including Wi-Fi. It resides in a point coordinator also known as access point (AP), to coordinate the communication within the network. The AP waits for PIFS duration rather than DIFS duration to grasp the channel. PIFS is less than DIFS duration and hence the point coordinator always has the priority to access the channel. The PCF is located directly above the distributed coordination function (DCF), in the IEEE 802.11 MAC Architecture. Channel access in PCF mode is centralized and hence the point coordinator sends CF-Poll frame to the PCF capable station to permit it to transmit a frame. In case the polled station does not have any frames to send, then it must transmit null frame. Due to the priority of PCF over DCF, stations that only use DCF might not gain access to the medium. To prevent this, a repetition interval has been designed to cover both (Contention free) PC ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Media Access Control
In IEEE 802 LAN/MAN standards, the medium access control (MAC, also called media access control) sublayer is the layer that controls the hardware responsible for interaction with the wired, optical or wireless transmission medium. The MAC sublayer and the logical link control (LLC) sublayer together make up the data link layer. The LLC provides flow control and multiplexing for the logical link (i.e. EtherType, 802.1Q VLAN tag etc), while the MAC provides flow control and multiplexing for the transmission medium. These two sublayers together correspond to layer 2 of the OSI model. For compatibility reasons, LLC is optional for implementations of IEEE 802.3 (the frames are then "raw"), but compulsory for implementations of other IEEE 802 physical layer standards. Within the hierarchy of the OSI model and IEEE 802 standards, the MAC sublayer provides a control abstraction of the physical layer such that the complexities of physical link control are invisible to the LLC and upper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]