Nerve Growth Factor IB
   HOME
*





Nerve Growth Factor IB
The nuclear receptor 4A1 (NR4A1 for "nuclear receptor subfamily 4 group A member 1") also known as Nur77, TR3, and NGFI-B is a protein that in humans is encoded by the ''NR4A1'' gene. Nuclear receptor 4A1 (NR4A1) is a member of the ''NR4A'' nuclear receptor family of intracellular transcription factors. NR4A1 is involved in cell cycle mediation, inflammation and apoptosis. Nuclear receptor 4A1 plays a key role in mediating inflammatory responses in macrophages. In addition, subcellular localization of the NR4A1 protein appears to play a key role in the survival and death of cells. Expression is inducible by phytohemagglutinin in human lymphocytes and by serum stimulation of arrested fibroblasts. Translocation of the protein from the nucleus to mitochondria induces apoptosis. Multiple alternatively spliced variants, encoding the same protein, have been identified. Structure The ''NR4A1'' gene contains seven exons. An amino terminal transactivation domain is encoded in exon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide. A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides. The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid residue ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nuclear Receptor 4A2
The nuclear receptor 4A2 (NR4A2) (nuclear receptor subfamily 4 group A member 2) also known as nuclear receptor related 1 protein (NURR1) is a protein that in humans is encoded by the ''NR4A2'' gene. NR4A2 is a member of the nuclear receptor family of intracellular transcription factors. NR4A2 plays a key role in the maintenance of the dopaminergic system of the brain. Mutations in this gene have been associated with disorders related to dopaminergic dysfunction, including Parkinson's disease and schizophrenia. Misregulation of this gene may be associated with rheumatoid arthritis. Four transcript variants encoding four distinct isoforms have been identified for this gene. Additional alternate splice variants may exist, but their full-length nature has not been determined. This protein is thought to be critical to development of the dopamine phenotype in the midbrain, as mice without NR4A2 are lacking expression of this phenotype. This is further confirmed by studies showing th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Human Genome Organisation
The Human Genome Organisation (HUGO) is a non-profit organization founded in 1988. HUGO represents an international coordinating scientific body in response to initiatives such as the Human Genome Project. HUGO has four active committees, including the HUGO Gene Nomenclature Committee (HGNC), and the HUGO Committee on Ethics, Law and Society (CELS). History HUGO was established at the first meeting on genome mapping and sequencing at Cold Spring Harbor in 1988. The idea of starting the organization stemmed from South African biologist Sydney Brenner, who is best known for his significant contributions to work on the genetic code and other areas of molecular biology, as well as winning the 2002 Nobel Prize in Physiology or Medicine. A Founding Council was elected at the meeting with a total of 42 scientists from 17 different countries, with Victor A. McKusick serving as founding President. In 2016, HUGO was located at the EWHA Womans University in Seoul, South Korea. In 2020, the H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequence Motif
In biology, a sequence motif is a nucleotide or amino-acid sequence pattern that is widespread and usually assumed to be related to biological function of the macromolecule. For example, an ''N''-glycosylation site motif can be defined as ''Asn, followed by anything but Pro, followed by either Ser or Thr, followed by anything but Pro residue''. Overview When a sequence motif appears in the exon of a gene, it may encode the "structural motif" of a protein; that is a stereotypical element of the overall structure of the protein. Nevertheless, motifs need not be associated with a distinctive secondary structure. " Noncoding" sequences are not translated into proteins, and nucleic acids with such motifs need not deviate from the typical shape (e.g. the "B-form" DNA double helix). Outside of gene exons, there exist regulatory sequence motifs and motifs within the " junk", such as satellite DNA. Some of these are believed to affect the shape of nucleic acids (see for example RN ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binding Site
In biochemistry and molecular biology, a binding site is a region on a macromolecule such as a protein that binds to another molecule with specificity. The binding partner of the macromolecule is often referred to as a ligand. Ligands may include other proteins (resulting in a protein-protein interaction), enzyme substrates, second messengers, hormones, or allosteric modulators. The binding event is often, but not always, accompanied by a conformational change that alters the protein's function. Binding to protein binding sites is most often reversible (transient and non-covalent), but can also be covalent reversible or irreversible. Function Binding of a ligand to a binding site on protein often triggers a change in conformation in the protein and results in altered cellular function. Hence binding site on protein are critical parts of signal transduction pathways. Types of ligands include neurotransmitters, toxins, neuropeptides, and steroid hormones. Binding sites in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Retinoid
The retinoids are a class of chemical compounds that are vitamers of vitamin A or are chemically related to it. Retinoids have found use in medicine where they regulate epithelial cell growth. Retinoids have many important functions throughout the body including roles in vision, regulation of cell proliferation and differentiation, growth of bone tissue, immune function, and activation of tumor suppressor genes. Research is also being done into their ability to treat skin cancers. Currently, alitretinoin (9-''cis''-retinoic acid) may be used topically to help treat skin lesions from Kaposi's sarcoma, and tretinoin (all-''trans''- retinoic acid) is used to treat acute promyelocytic leukemia. Types There are four generations of retinoids: * First generation include retinol, retinal, tretinoin (retinoic acid), isotretinoin, and alitretinoin * Second generation include etretinate and its metabolite acitretin * Third generation include adapalene, bexarotene, and tazarotene * Fourth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Retinoid X Receptor
The retinoid X receptor (RXR) is a type of nuclear receptor that is activated by 9-cis retinoic acid, which is discussed controversially to be of endogenous relevance, and 9-''cis''-13,14-dihydroretinoic acid, which is likely to be the major endogenous mammalian RXR-selective agonist. In a novel review publication, this 9-''cis''-13,14-dihydroretinoic acid was shown to be a metabolite not originating from the known vitamin A (vitamin A1) pathway and its nutritional precursors all-''trans''-retinol ( vitamin A (vitamin A1) or all-''trans''- beta-carotene (provitamin A (provitamin A1)). An independent pathway for generating this endogenous RXR-ligand 9-''cis''-13,14-dihydroretinoic acid from 9-''cis''-13,14-dihydroretinol present in food source and named vitamin A5 or alternatively via provitamin A5 has been suggested as the first novel vitamin identified since 1948, cobalamin / vitamin B12. There are three retinoic X receptors (RXR): RXR-alpha, RXR-beta, and RXR-gamma, en ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


COUP-TF
The chicken ovalbumin upstream promoter transcription factor (COUP-TFs) proteins are members of the nuclear receptor family of intracellular transcription factors. There are two variants of the COUP-TFs, labeled as COUP-TFI and COUP-TFII COUP-TFII (COUP transcription factor 2), also known as NR2F2 (nuclear receptor subfamily 2, group F, member 2) is a protein that in humans is encoded by the ''NR2F2'' gene. The COUP acronym stands for chicken ovalbumin upstream promoter. Functio ... encoded by the and genes respectively. COUP-TFs play critical roles in the development of organisms. References External links * * * Intracellular receptors Transcription factors {{gene-15-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heterodimer
In biochemistry, a protein dimer is a macromolecular complex formed by two protein monomers, or single proteins, which are usually non-covalently bound. Many macromolecules, such as proteins or nucleic acids, form dimers. The word ''dimer'' has roots meaning "two parts", '' di-'' + '' -mer''. A protein dimer is a type of protein quaternary structure. A protein homodimer is formed by two identical proteins. A protein heterodimer is formed by two different proteins. Most protein dimers in biochemistry are not connected by covalent bonds. An example of a non-covalent heterodimer is the enzyme reverse transcriptase, which is composed of two different amino acid chains. An exception is dimers that are linked by disulfide bridges such as the homodimeric protein NEMO. Some proteins contain specialized domains to ensure dimerization (dimerization domains) and specificity. The G protein-coupled cannabinoid receptors have the ability to form both homo- and heterodimers with several typ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Response Element
Response elements are short sequences of DNA within a gene Promoter (genetics), promoter or Enhancer (genetics), enhancer region that are able to bind specific transcription factors and regulate Transcription (genetics), transcription of genes. Under conditions of stress, a transcription activator protein binds to the response element and stimulates transcription. If the same response element sequence is located in the control regions of different genes, then these genes will be activated by the same stimuli, thus producing a coordinated response. Hormone response element A hormone response element (HRE) is a short sequence of DNA within the Promoter (biology), promoter of a gene, that is able to bind to a specific hormone receptor complex and therefore regulate Transcription (genetics), transcription. The sequence is most commonly a pair of inverted repeats separated by three nucleotides, which also indicates that the receptor binds as a protein dimer, dimer. Specifically, HRE resp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Homodimer
In biochemistry, a protein dimer is a macromolecular complex formed by two protein monomers, or single proteins, which are usually non-covalently bound. Many macromolecules, such as proteins or nucleic acids, form dimers. The word ''dimer'' has roots meaning "two parts", '' di-'' + '' -mer''. A protein dimer is a type of protein quaternary structure. A protein homodimer is formed by two identical proteins. A protein heterodimer is formed by two different proteins. Most protein dimers in biochemistry are not connected by covalent bonds. An example of a non-covalent heterodimer is the enzyme reverse transcriptase, which is composed of two different amino acid chains. An exception is dimers that are linked by disulfide bridges such as the homodimeric protein NEMO. Some proteins contain specialized domains to ensure dimerization (dimerization domains) and specificity. The G protein-coupled cannabinoid receptors have the ability to form both homo- and heterodimers with several ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]