Negative Conclusion From Affirmative Premises
Negative conclusion from affirmative premises is a syllogistic fallacy committed when a categorical syllogism has a negative conclusion yet both premises are affirmative. The inability of affirmative premises to reach a negative conclusion is usually cited as one of the basic rules of constructing a valid categorical syllogism. Statements in syllogisms can be identified as the following forms: * a: All A is B. (affirmative) * e: No A is B. (negative) * i: Some A is B. (affirmative) * o: Some A is not B. (negative) The rule states that a syllogism in which both premises are of form ''a'' or ''i'' (affirmative) cannot reach a conclusion of form ''e'' or ''o'' (negative). Exactly one of the premises must be negative to construct a valid syllogism with a negative conclusion. (A syllogism with two negative premises commits the related fallacy of exclusive premises.) Example (invalid aae form): :Premise: All colonels are officers. :Premise: All officers are soldiers. :Conclusion: ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Syllogistic Fallacy
A syllogism ( grc-gre, συλλογισμός, ''syllogismos'', 'conclusion, inference') is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true. In its earliest form (defined by Aristotle in his 350 BCE book ''Prior Analytics''), a syllogism arises when two true premises (propositions or statements) validly imply a conclusion, or the main point that the argument aims to get across. For example, knowing that all men are mortal (major premise) and that Socrates is a man (minor premise), we may validly conclude that Socrates is mortal. Syllogistic arguments are usually represented in a three-line form: All men are mortal. Socrates is a man. Therefore, Socrates is mortal.In antiquity, two rival syllogistic theories existed: Aristotelian syllogism and Stoic syllogism. From the Middle Ages onwards, ''categorical syllogism'' and ''syllogism'' were usually used interchangeably. This ar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Categorical Syllogism
A syllogism ( grc-gre, συλλογισμός, ''syllogismos'', 'conclusion, inference') is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true. In its earliest form (defined by Aristotle in his 350 BCE book ''Prior Analytics''), a syllogism arises when two true premises (propositions or statements) validly imply a conclusion, or the main point that the argument aims to get across. For example, knowing that all men are mortal (major premise) and that Socrates is a man (minor premise), we may validly conclude that Socrates is mortal. Syllogistic arguments are usually represented in a three-line form: All men are mortal. Socrates is a man. Therefore, Socrates is mortal.In antiquity, two rival syllogistic theories existed: Aristotelian syllogism and Stoic syllogism. From the Middle Ages onwards, ''categorical syllogism'' and ''syllogism'' were usually used interchangeably. This ar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logical Consequence
Logical consequence (also entailment) is a fundamental concept in logic, which describes the relationship between statements that hold true when one statement logically ''follows from'' one or more statements. A valid logical argument is one in which the conclusion is entailed by the premises, because the conclusion is the consequence of the premises. The philosophical analysis of logical consequence involves the questions: In what sense does a conclusion follow from its premises? and What does it mean for a conclusion to be a consequence of premises?Beall, JC and Restall, Greg, Logical Consequence' The Stanford Encyclopedia of Philosophy (Fall 2009 Edition), Edward N. Zalta (ed.). All of philosophical logic is meant to provide accounts of the nature of logical consequence and the nature of logical truth. Logical consequence is necessary and formal, by way of examples that explain with formal proof and models of interpretation. A sentence is said to be a logical conse ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Premise
A premise or premiss is a true or false statement that helps form the body of an argument, which logically leads to a true or false conclusion. A premise makes a declarative statement about its subject matter which enables a reader to either agree or disagree with the premise in question, and in doing so understand the logical assumptions of the argument. If a premise is logically false, then the conclusion, which follows from all of the premises of the argument, must also be false—unless the conclusion is supported by a logically valid argument which the reader agrees with. Therefore, if the reader disagrees with any one of the argument's premises, they have a logical basis to reject the conclusion of the argument. Explanation In logic, an argument requires a set of at least two declarative sentences (or "propositions") known as the "premises" (or "premisses"), along with another declarative sentence (or "proposition"), known as the conclusion. This structure of two prem ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Validity (logic)
In logic, specifically in deductive reasoning, an argument is valid if and only if it takes a form that makes it impossible for the premises to be true and the conclusion nevertheless to be false. It is not required for a valid argument to have premises that are actually true, but to have premises that, if they were true, would guarantee the truth of the argument's conclusion. Valid arguments must be clearly expressed by means of sentences called well-formed formulas (also called ''wffs'' or simply ''formulas''). The validity of an argument can be tested, proved or disproved, and depends on its logical form. Arguments In logic, an argument is a set of statements expressing the ''premises'' (whatever consists of empirical evidences and axiomatic truths) and an ''evidence-based conclusion.'' An argument is ''valid'' if and only if it would be contradictory for the conclusion to be false if all of the premises are true. Validity doesn't require the truth of the premises, inst ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fallacy Of Exclusive Premises
A fallacy is the use of invalid or otherwise faulty reasoning, or "wrong moves," in the construction of an argument which may appear stronger than it really is if the fallacy is not spotted. The term in the Western intellectual tradition was introduced in the Aristotelian '' De Sophisticis Elenchis''. Some fallacies may be committed intentionally to manipulate or persuade by deception. Others may be committed unintentionally because of human limitations such as carelessness, cognitive or social biases and ignorance, or, potentially, as the inevitable consequence of the limitations of language and understanding of language. This includes ignorance of the right reasoning standard, but also ignorance of relevant properties of the context. For instance, the soundness of legal arguments depends on the context in which the arguments are made. Fallacies are commonly divided into "formal" and "informal." A formal fallacy is a flaw in the structure of a deductive argument which r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proper Subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. The subset relation defines a partial order on sets. In fact, the subsets of a given set form a Boolean algebra under the subset relation, in which the join and meet are given by intersection and union, and the subset relation itself is the Boolean inclusion relation. Definition If ''A'' and ''B'' are sets and every element of ''A'' is also an element of ''B'', then: :*''A'' is a subset of ''B'', denoted by A \subseteq B, or equivalently, :* ''B'' is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definition A binary relation \,\sim\, on a set X is said to be an equivalence relation, if and only if it is reflexive, symmetric and transitive. That is, for all a, b, and c in X: * a \sim a ( ref ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Affirmative Conclusion From A Negative Premise
Affirmative conclusion from a negative premise (illicit negative) is a formal fallacy that is committed when a categorical syllogism has a positive conclusion and one or two negative premises. For example: :''No fish are dogs, and no dogs can fly, therefore all fish can fly.'' The only thing that can be properly inferred from these premises is that some things that are not fish cannot fly, provided that dogs exist. Or: :''We don't read that trash. People who read that trash don't appreciate real literature. Therefore, we appreciate real literature.'' This could be illustrated mathematically as :If A \cap B = \emptyset and B \cap C = \emptyset then A\subset C. It is a fallacy because any valid forms of categorical syllogism that assert a negative premise must have a negative conclusion. See also * Negative conclusion from affirmative premises, in which a syllogism is invalid because the conclusion is negative yet the premises are affirmative * Fallacy of exclusive premises A ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fallacy Of Exclusive Premises
A fallacy is the use of invalid or otherwise faulty reasoning, or "wrong moves," in the construction of an argument which may appear stronger than it really is if the fallacy is not spotted. The term in the Western intellectual tradition was introduced in the Aristotelian '' De Sophisticis Elenchis''. Some fallacies may be committed intentionally to manipulate or persuade by deception. Others may be committed unintentionally because of human limitations such as carelessness, cognitive or social biases and ignorance, or, potentially, as the inevitable consequence of the limitations of language and understanding of language. This includes ignorance of the right reasoning standard, but also ignorance of relevant properties of the context. For instance, the soundness of legal arguments depends on the context in which the arguments are made. Fallacies are commonly divided into "formal" and "informal." A formal fallacy is a flaw in the structure of a deductive argument which r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |