HOME
*





NTRUSign
NTRUSign, also known as the NTRU Signature Algorithm, is an NTRU public-key cryptography digital signature algorithm based on the GGH signature scheme. The original version of NTRUSign was Polynomial Authentication and Signature Scheme (PASS), and was published at CrypTEC'99. The improved version of PASS was named as NTRUSign, and was presented at the rump session of Asiacrypt 2001 and published in peer-reviewed form at the RSA Conference 2003. The 2003 publication included parameter recommendations for 80-bit security. A subsequent 2005 publication revised the parameter recommendations for 80-bit security, presented parameters that gave claimed security levels of 112, 128, 160, 192 and 256 bits, and described an algorithm to derive parameter sets at any desired security level. NTRU Cryptosystems, Inc. have applied for a patent on the algorithm. NTRUSign involves mapping a message to a random point in 2''N''-dimensional space, where ''N'' is one of the NTRUSign parameters, and s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


NTRU
NTRU is an open-source public-key cryptosystem that uses lattice-based cryptography to encrypt and decrypt data. It consists of two algorithms: NTRUEncrypt, which is used for encryption, and NTRUSign, which is used for digital signatures. Unlike other popular public-key cryptosystems, it is resistant to attacks using Shor's algorithm. NTRUEncrypt was patented, but it was placed in the public domain in 2017. NTRUSign is patented, but it can be used by software under the GPL. History The first version of the system, which was called NTRU, was developed in 1996 by mathematicians Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. That same year, the developers of NTRU joined with Daniel Lieman and founded the company NTRU Cryptosystems, Inc., and were given a patent on the cryptosystem. The name "NTRU", chosen for the company and soon applied to the system as well, was originally derived from the pun ''Number Theorists 'R' Us'' or, alternatively, stood for ''Number Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


NIST Post-Quantum Cryptography Standardization
Post-Quantum Cryptography Standardization is a program and competition by NIST to update their standards to include post-quantum cryptography. It was announced at PQCrypto 2016. 23 signature schemes and 59 encryption/Key encapsulation, KEM schemes were submitted by the initial submission deadline at the end of 2017 of which 69 total were deemed complete and proper and participated in the first round. Seven of these, of which 3 are signature schemes, have advanced to the third round, which was announced on July 22, 2020. Background Academic research on the potential impact of quantum computing dates back to at least 2001. A NIST published report from April 2016 cites experts that acknowledge the possibility of quantum technology to render the commonly used RSA (algorithm), RSA algorithm insecure by 2030. As a result, a need to standardize Post-quantum cryptography, quantum-secure cryptographic primitives was pursued. Since most symmetric primitives are relatively easy to modify in a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Post-quantum Cryptography
In cryptography, post-quantum cryptography (sometimes referred to as quantum-proof, quantum-safe or quantum-resistant) refers to cryptographic algorithms (usually public-key algorithms) that are thought to be secure against a cryptanalytic attack by a quantum computer. The problem with currently popular algorithms is that their security relies on one of three hard mathematical problems: the integer factorization problem, the discrete logarithm problem or the elliptic-curve discrete logarithm problem. All of these problems could be easily solved on a sufficiently powerful quantum computer running Shor's algorithm. Even though current quantum computers lack processing power to break any real cryptographic algorithm, many cryptographers are designing new algorithms to prepare for a time when quantum computing becomes a threat. This work has gained greater attention from academics and industry through the PQCrypto conference series since 2006 and more recently by several workshops on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




NTRUEncrypt
The NTRUEncrypt public key cryptosystem, also known as the NTRU encryption algorithm, is an NTRU lattice-based alternative to RSA and elliptic curve cryptography (ECC) and is based on the shortest vector problem in a lattice (which is not known to be breakable using quantum computers). It relies on the presumed difficulty of factoring certain polynomials in a truncated polynomial ring into a quotient of two polynomials having very small coefficients. Breaking the cryptosystem is strongly related, though not equivalent, to the algorithmic problem of lattice reduction in certain lattices. Careful choice of parameters is necessary to thwart some published attacks. Since both encryption and decryption use only simple polynomial multiplication, these operations are very fast compared to other asymmetric encryption schemes, such as RSA, ElGamal and elliptic curve cryptography. However, NTRUEncrypt has not yet undergone a comparable amount of cryptographic analysis in deployed form. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GGH Signature Scheme
The Goldreich-Goldwasser-Halevi (GGH) signature scheme is a digital signature scheme proposed in 1995 and published in 1997, based on solving the closest vector problem (CVP) in a lattice. The signer demonstrates knowledge of a good basis for the lattice by using it to solve CVP on a point representing the message; the verifier uses a bad basis for the same lattice to verify that the signature under consideration is actually a lattice point and is sufficiently close to the message point. The idea was not developed in detail in the original paper, which focussed more on the associated encryption algorithm. GGH signatures form the basis for the NTRUSign NTRUSign, also known as the NTRU Signature Algorithm, is an NTRU public-key cryptography digital signature algorithm based on the GGH signature scheme. The original version of NTRUSign was Polynomial Authentication and Signature Scheme (PASS), an ... signature algorithm. and Oded Regev had cryptanalyzed ( broken) the original GG ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Digital Signature
A digital signature is a mathematical scheme for verifying the authenticity of digital messages or documents. A valid digital signature, where the prerequisites are satisfied, gives a recipient very high confidence that the message was created by a known sender (authenticity), and that the message was not altered in transit (integrity). Digital signatures are a standard element of most cryptographic protocol suites, and are commonly used for software distribution, financial transactions, contract management software, and in other cases where it is important to detect forgery or tampering. Digital signatures are often used to implement electronic signatures, which includes any electronic data that carries the intent of a signature, but not all electronic signatures use digital signatures.

[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


RSA Conference
The RSA Conference is a series of IT security conferences. Approximately 45,000 people attend one of the conferences each year. It was founded in 1991 as a small cryptography conference. RSA conferences take place in the United States, Europe, Asia, and the United Arab Emirates each year. The conference also hosts educational, professional networking, and awards programs. History Early history The name RSA refers to the public-key encryption technology developed by RSA Data Security, Inc., which was founded in 1982. The abbreviation stands for Rivest, Shamir, and Adleman, the inventors of the technique. The idea for the first RSA conference was conceived in 1991 in a phone call between then RSA Security CEO Jim Bidzos and the Executive Director of the Electronic Privacy Information Center. The first conference had just one panel, called "DES and DSS: Standards of Choice." It focused on why attendees should not adopt DSS, a standard that was expected to challenge RSA Security's sta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Security Level
In cryptography, security level is a measure of the strength that a cryptographic primitive — such as a cipher or hash function — achieves. Security level is usually expressed as a number of "bits of security" (also security strength), where ''n''-bit security means that the attacker would have to perform 2''n'' operations to break it, but other methods have been proposed that more closely model the costs for an attacker. This allows for convenient comparison between algorithms and is useful when combining multiple primitives in a hybrid cryptosystem, so there is no clear weakest link. For example, AES-128 (key size 128 bits) is designed to offer a 128-bit security level, which is considered roughly equivalent to a RSA using 3072-bit key. In this context, security claim or target security level is the security level that a primitive was initially designed to achieve, although "security level" is also sometimes used in those contexts. When attacks are found that hav ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Closest Vector Problem
In computer science, lattice problems are a class of Mathematical optimization, optimization problems related to mathematical objects called Lattice (group), lattices. The conjectured intractability of such problems is central to the construction of secure Lattice-based cryptography, lattice-based cryptosystems: Lattice problems are an example of NP-hardness, NP-hard problems which have been shown to be Computational hardness assumption, average-case hard, providing a test case for the security of cryptographic algorithms. In addition, some lattice problems which are worst-case hard can be used as a basis for extremely secure cryptographic schemes. The use of worst-case hardness in such schemes makes them among the very few schemes that are very likely secure even against quantum computers. For applications in such cryptosystems, lattices over vector space (often \mathbb^n) or free modules (often \mathbb^n) are generally considered. For all the problems below, assume that we are g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Public-key Cryptography
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions. Security of public-key cryptography depends on keeping the private key secret; the public key can be openly distributed without compromising security. In a public-key encryption system, anyone with a public key can encrypt a message, yielding a ciphertext, but only those who know the corresponding private key can decrypt the ciphertext to obtain the original message. For example, a journalist can publish the public key of an encryption key pair on a web site so that sources can send secret messages to the news organization in ciphertext. Only the journalist who knows the corresponding private key can decrypt the ciphertexts to obtain the sources' messages—an eavesdropp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fiat–Shamir Heuristic
In cryptography, the Fiat–Shamir heuristic is a technique for taking an interactive proof of knowledge and creating a digital signature based on it. This way, some fact (for example, knowledge of a certain secret number) can be publicly proven without revealing underlying information. The technique is due to Amos Fiat and Adi Shamir (1986). For the method to work, the original interactive proof must have the property of being public-coin, i.e. verifier's random coins are made public throughout the proof protocol. The heuristic was originally presented without a proof of security; later, Pointcheval and Stern proved its security against chosen message attacks in the ''random oracle model'', that is, assuming random oracles exist. This result was generalized to the quantum-accessible random oracle (QROM) by Don, Fehr, Majenz and Schaffner, and concurrently by Liu and Zhandry. In the case that random oracles do not exist, the Fiat–Shamir heuristic has been proven insecure by Sh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]