NP (complexity)
In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems. NP is the Set (mathematics), set of decision problems for which the Computational complexity theory#Problem instances, problem instances, where the answer is "yes", have mathematical proof, proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine.''Polynomial time'' refers to how quickly the number of operations needed by an algorithm, relative to the size of the problem, grows. It is therefore a measure of efficiency of an algorithm. * NP is the set of decision problems ''solvable'' in polynomial time by a nondeterministic Turing machine. * NP is the set of decision problems ''verifiable'' in polynomial time by a deterministic Turing machine. The first definition is the basis for the abbreviation NP; "Nondeterministic alg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
P Np Np-complete Np-hard
P, or p, is the sixteenth letter (alphabet), letter of the Latin alphabet, used in the English alphabet, modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is English alphabet#Letter names, ''pee'' (pronounced ), plural ''pees''. History The Semitic languages, Semitic Pê (mouth), as well as the Greek language, Greek Π or π (Pi (letter), Pi), and the Etruscan language, Etruscan and Latin letters that developed from the former alphabet all symbolized , a voiceless bilabial plosive. Use in writing systems English In English orthography, represents the sound . A common Digraph (orthography), digraph in English is , which represents the sound , and can be used to transliterate ''phi'' in loanwords from Greek language, Greek. In German, the digraph is common, representing a labial affricate . Most English words beginning with are of foreign origin, primarily French, Latin and Greek; these languages pres ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computer Science
Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, applied disciplines (including the design and implementation of Computer architecture, hardware and Software engineering, software). Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and preventing security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Turing Machine
A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algorithm. The machine operates on an infinite memory tape divided into discrete mathematics, discrete cells, each of which can hold a single symbol drawn from a finite set of symbols called the Alphabet (formal languages), alphabet of the machine. It has a "head" that, at any point in the machine's operation, is positioned over one of these cells, and a "state" selected from a finite set of states. At each step of its operation, the head reads the symbol in its cell. Then, based on the symbol and the machine's own present state, the machine writes a symbol into the same cell, and moves the head one step to the left or the right, or halts the computation. The choice of which replacement symbol to write, which direction to move the head, and whet ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Super-polynomial Time
In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is genera ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complement (set Theory)
In set theory, the complement of a Set (mathematics), set , often denoted by A^c (or ), is the set of Element (mathematics), elements not in . When all elements in the Universe (set theory), universe, i.e. all elements under consideration, are considered to be Element (mathematics), members of a given set , the absolute complement of is the set of elements in that are not in . The relative complement of with respect to a set , also termed the set difference of and , written B \setminus A, is the set of elements in that are not in . Absolute complement Definition If is a set, then the absolute complement of (or simply the complement of ) is the set of elements not in (within a larger set that is implicitly defined). In other words, let be a set that contains all the elements under study; if there is no need to mention , either because it has been previously specified, or it is obvious and unique, then the absolute complement of is the relative complement of in : ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Formal Language
In logic, mathematics, computer science, and linguistics, a formal language is a set of strings whose symbols are taken from a set called "alphabet". The alphabet of a formal language consists of symbols that concatenate into strings (also called "words"). Words that belong to a particular formal language are sometimes called ''well-formed words''. A formal language is often defined by means of a formal grammar such as a regular grammar or context-free grammar. In computer science, formal languages are used, among others, as the basis for defining the grammar of programming languages and formalized versions of subsets of natural languages, in which the words of the language represent concepts that are associated with meanings or semantics. In computational complexity theory, decision problems are typically defined as formal languages, and complexity classes are defined as the sets of the formal languages that can be parsed by machines with limited computational power. In ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kleene Star
In mathematical logic and theoretical computer science, the Kleene star (or Kleene operator or Kleene closure) is a unary operation on a Set (mathematics), set to generate a set of all finite-length strings that are composed of zero or more repetitions of members from . It was named after American mathematician Stephen Cole Kleene, who first introduced and widely used it to characterize Automata theory, automata for regular expressions. In mathematics, it is more commonly known as the free monoid construction. Definition Given a set V, define :V^=\ (the set consists only of the empty string), :V^=V, and define recursively the set :V^=\ for each i>0. V^i is called the i-th power of V, it is a shorthand for the Concatenation#Concatenation of sets of strings, concatenation of V by itself i times. That is, ''V^i'' can be understood to be the set of all strings that can be represented as the concatenation of i members from V. The definition of Kleene star on V is : V^*=\bigcup_V^i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Concatenation
In formal language theory and computer programming, string concatenation is the operation of joining character strings end-to-end. For example, the concatenation of "snow" and "ball" is "snowball". In certain formalizations of concatenation theory, also called string theory, string concatenation is a primitive notion. Syntax In many programming languages, string concatenation is a binary infix operator, and in some it is written without an operator. This is implemented in different ways: * Overloading the plus sign + Example from C#: "Hello, " + "World" has the value "Hello, World". * Dedicated operator, such as . in PHP, & in Visual Basic, and , , in SQL. This has the advantage over reusing + that it allows implicit type conversion to string. * string literal concatenation, which means that adjacent strings are concatenated without any operator. Example from C: "Hello, " "World" has the value "Hello, World". In many scientific publications or standards the con ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Intersection
In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their intersection is the point at which they meet. More generally, in set theory, the intersection of sets is defined to be the set of elements which belong to all of them. Unlike the Euclidean definition, this does not presume that the objects under consideration lie in a common space. It simply means the overlapping area of two or more objects or geometries. Intersection is one of the basic concepts of geometry. An intersection can have various geometric shapes, but a point is the most common in a plane geometry. Incidence geometry defines an intersection (usually, of flats) as an object of lower dimension that is incident to each of the original objects. In this approach an intersection can be sometimes undefined, such as for paral ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Union (set Theory)
In set theory, the union (denoted by ∪) of a collection of Set (mathematics), sets is the set of all element (set theory), elements in the collection. It is one of the fundamental operations through which sets can be combined and related to each other. A refers to a union of Zero, zero () sets and it is by definition equal to the empty set. For explanation of the symbols used in this article, refer to the List of mathematical symbols, table of mathematical symbols. Binary union The union of two sets ''A'' and ''B'' is the set of elements which are in ''A'', in ''B'', or in both ''A'' and ''B''. In set-builder notation, : A \cup B = \. For example, if ''A'' = and ''B'' = then ''A'' ∪ ''B'' = . A more elaborate example (involving two infinite sets) is: : ''A'' = : ''B'' = : A \cup B = \ As another example, the number 9 is ''not'' contained in the union of the set of prime numbers and the set of even numbers , because 9 is neither prime nor even. Sets cannot ha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Certificate (complexity)
In computational complexity theory, a certificate (also called a witness) is a string that certifies the answer to a computation, or certifies the membership of some string in a language. A certificate is often thought of as a solution path within a verification process, which is used to check whether a problem gives the answer "Yes" or "No". In the decision tree model of computation, certificate complexity is the minimum number of the n input variables of a decision tree that need to be assigned a value in order to definitely establish the value of the Boolean function f. Use in definitions The notion of certificate is used to define semi-decidability: a formal language L is semi-decidable if there is a two-place predicate relationR \subseteq \Sigma^* \times \Sigma^* such that R is computable, and such that for all x \in \Sigma^*: x ∈ L ⇔ there exists y such that R(x, y) Certificates also give definitions for some complexity classes which can alternatively be chara ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Witness (mathematics)
In mathematical logic, a witness is a specific value to be substituted for variable of an existential statement of the form such that is true. Examples For example, a theory ''T'' of arithmetic is said to be inconsistent if there exists a proof in ''T'' of the formula "0 = 1". The formula I(''T''), which says that ''T'' is inconsistent, is thus an existential formula. A witness for the inconsistency of ''T'' is a particular proof of "0 = 1" in ''T''. Boolos, Burgess, and Jeffrey (2002:81) define the notion of a witness with the example, in which ''S'' is an ''n''-place relation on natural numbers, ''R'' is an ''(n+1)''-place recursive relation, and ↔ indicates logical equivalence In logic and mathematics, statements p and q are said to be logically equivalent if they have the same truth value in every model. The logical equivalence of p and q is sometimes expressed as p \equiv q, p :: q, \textsfpq, or p \iff q, depending ... (if and only if): :: ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |