N! Conjecture
   HOME
*





N! Conjecture
In mathematics, the ''n''! conjecture is the conjecture that the dimension of a certain bi-graded module of diagonal harmonics is ''n''!. It was made by A. M. Garsia and M. Haiman and later proved by M. Haiman. It implies Macdonald's positivity conjecture about the Macdonald polynomials. Formulation and background The Macdonald polynomials P_\lambda are a two-parameter family of orthogonal polynomials indexed by a positive weight λ of a root system, introduced by Ian G. Macdonald (1987). They generalize several other families of orthogonal polynomials, such as Jack polynomials and Hall–Littlewood polynomials. They are known to have deep relationships with affine Hecke algebras and Hilbert schemes, which were used to prove several conjectures made by Macdonald about them. introduced a new basis for the space of symmetric functions, which specializes to many of the well-known bases for the symmetric functions, by suitable substitutions for the parameters ''q'' and ''t'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zonal Symmetric Function
Zonal can refer to: * Zonal and meridional, directions on a globe, west–east and north–south, respectively. * Zonal and poloidal, directions in a toroidal magnetically confined plasma * Zonal polynomial, a symmetric multivariate polynomial * Zonal pelargonium Zonal can refer to: * Zonal and meridional, directions on a globe, west–east and north–south, respectively. * Zonal and poloidal, directions in a toroidal magnetically confined plasma * Zonal polynomial, a symmetric multivariate polynomial * Zo ..., a type of pelargoniums * Zonal tournaments in chess: see Interzonal#Zonal tournaments * Electronic musicians Zonal, previously known as Techno Animal {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Advances In Mathematics
''Advances in Mathematics'' is a peer-reviewed scientific journal covering research on pure mathematics. It was established in 1961 by Gian-Carlo Rota. The journal publishes 18 issues each year, in three volumes. At the origin, the journal aimed at publishing articles addressed to a broader "mathematical community", and not only to mathematicians in the author's field. Herbert Busemann writes, in the preface of the first issue, "The need for expository articles addressing either all mathematicians or only those in somewhat related fields has long been felt, but little has been done outside of the USSR. The serial publication ''Advances in Mathematics'' was created in response to this demand." Abstracting and indexing The journal is abstracted and indexed in:Abstracting and Indexing
*

picture info

Representation Theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication). The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories. The algebraic objects amenable to such a description include groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Group Representation Theory
In mathematics, the representation theory of the symmetric group is a particular case of the representation theory of finite groups, for which a concrete and detailed theory can be obtained. This has a large area of potential applications, from symmetric function theory to quantum chemistry studies of atoms, molecules and solids. The symmetric group S''n'' has order ''n''!. Its conjugacy classes are labeled by partitions of ''n''. Therefore according to the representation theory of a finite group, the number of inequivalent irreducible representations, over the complex numbers, is equal to the number of partitions of ''n''. Unlike the general situation for finite groups, there is in fact a natural way to parametrize irreducible representations by the same set that parametrizes conjugacy classes, namely by partitions of ''n'' or equivalently Young diagrams of size ''n''. Each such irreducible representation can in fact be realized over the integers (every permutation acting by a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Group
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group \mathrm_n defined over a finite set of n symbols consists of the permutations that can be performed on the n symbols. Since there are n! (n factorial) such permutation operations, the order (number of elements) of the symmetric group \mathrm_n is n!. Although symmetric groups can be defined on infinite sets, this article focuses on the finite symmetric groups: their applications, their elements, their conjugacy classes, a finite presentation, their subgroups, their automorphism groups, and their representation theory. For the remainder of this article, "symmetric group" will mean a symmetric group on a finite set. The symmetric group is important to diverse areas of mathematics such as Galois theory, invariant theory, the representatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diagonal Harmonics
In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word ''diagonal'' derives from the ancient Greek διαγώνιος ''diagonios'', "from angle to angle" (from διά- ''dia-'', "through", "across" and γωνία ''gonia'', "angle", related to ''gony'' "knee"); it was used by both Strabo and Euclid to refer to a line connecting two vertices of a rhombus or cuboid, and later adopted into Latin as ''diagonus'' ("slanting line"). In matrix algebra, the diagonal of a square matrix consists of the entries on the line from the top left corner to the bottom right corner. There are also other, non-mathematical uses. Non-mathematical uses In engineering, a diagonal brace is a beam used to brace a rectangular structure (such as scaffolding) to withstand strong forces pushing into it; although called a diagonal, due to practical considerations d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kostka–Foulkes Polynomials
In mathematics, Kostka polynomials, named after the mathematician Carl Kostka, are families of polynomials that generalize the Kostka numbers. They are studied primarily in algebraic combinatorics and representation theory. The two-variable Kostka polynomials ''K''λμ(''q'', ''t'') are known by several names including Kostka–Foulkes polynomials, Macdonald–Kostka polynomials or ''q'',''t''-Kostka polynomials. Here the indices λ and μ are integer partitions and ''K''λμ(''q'', ''t'') is polynomial in the variables ''q'' and ''t''. Sometimes one considers single-variable versions of these polynomials that arise by setting ''q'' = 0, i.e., by considering the polynomial ''K''λμ(''t'') = ''K''λμ(0, ''t''). There are two slightly different versions of them, one called transformed Kostka polynomials. The one-variable specializations of the Kostka polynomials can be used to relate Hall-Littlewood polynomials ''P''μ to Schur polynomials ''s''λ: : s_\lambda(x_1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Claudio Procesi
Claudio Procesi (born 31 March 1941 in Rome) is an Italian mathematician, known for works in algebra and representation theory. Career Procesi studied at the Sapienza University of Rome, where he received his degree (Laurea) in 1963. In 1966 he graduated from the University of Chicago advised by Israel Herstein, with a thesis titled "On rings with polynomial identities". From 1966 he was assistant professor at the University of Rome, 1970 associate professor at the University of Lecce, and 1971 at the University of Pisa. From 1973 he was full professor in Pisa and in 1975 ordinary Professor at the Sapienza University of Rome. He was a visiting scientist at Columbia University (1969–1970), the University of California, Los Angeles (1973/74), at the Instituto Nacional de Matemática Pura e Aplicada, at the Massachusetts Institute of Technology (1991), at the University of Grenoble, at Brandeis University (1981/2), at the University of Texas at Austin (1984), the Institute for Ad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Module (mathematics)
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication. Modules are very closely related to the representation theory of groups. They are also one of the central notions of commutative algebra and homological algebra, and are used widely in algebraic geometry and algebraic topology. Introduction and definition Motivation In a vector space, the set of scalars is a field and acts on the vectors by scalar multiplication, subject to certain axioms such as the distributive law. In a module, the scalars need only be a ring, so the module conc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adriano Garsia
Adriano Mario Garsia (born 20 August 1928) is a Tunisian-born Italian American mathematician who works in analysis, combinatorics, representation theory, and algebraic geometry. He is a student of Charles Loewner and has published work on representation theory, symmetric functions, and algebraic combinatorics. He and Mark Haiman made the N!_conjecture. He is also the namesake of the Garsia–Wachs algorithm for optimal binary search trees, which he published with his student Michelle L. Wachs in 1977. Born to Italian Tunisians in Tunis on 20 August 1928, Garsia moved to Rome in 1946. , he had 36 students and at least 200 descendants, according to the data at the Mathematics Genealogy Project. He was on the faculty of the University of California, San Diego. He retired in 2013 after 57 years at UCSD as a founding member of the Mathematics Department. At his 90 Birthday Conference in 2019, it was notable that he was the oldest principal investigator of a grant from the Nati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface or blackboard bold \mathbb. The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the natural numbers, \mathbb is countably infinite. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and  are not. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]