HOME
*



picture info

Mössbauer Effect
The Mössbauer effect, or recoilless nuclear resonance fluorescence, is a physical phenomenon discovered by Rudolf Mössbauer in 1958. It involves the resonant and recoil-free emission and absorption of gamma radiation by atomic nuclei bound in a solid. Its main application is in Mössbauer spectroscopy. In the Mössbauer effect, a narrow resonance for nuclear gamma emission and absorption results from the momentum of recoil being delivered to a surrounding crystal lattice rather than to the emitting or absorbing nucleus alone. When this occurs, no gamma energy is lost to the kinetic energy of recoiling nuclei at either the emitting or absorbing end of a gamma transition: emission and absorption occur at the same energy, resulting in strong, resonant absorption. History The emission and absorption of X-rays by gases had been observed previously, and it was expected that a similar phenomenon would be found for gamma rays, which are created by nuclear transitions (as opposed to X- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Rudolf Mössbauer
Rudolf Ludwig Mössbauer (German spelling: ''Mößbauer''; ; 31 January 1929 – 14 September 2011) was a German physicist best known for his 1957 discovery of ''recoilless nuclear resonance fluorescence'' for which he was awarded the 1961 Nobel Prize in Physics. This effect, called the Mössbauer effect, is the basis for Mössbauer spectroscopy. Career Mössbauer was born in Munich, where he also studied physics at the Technical University of Munich. He prepared his Diplom thesis in the Laboratory of Applied Physics of Heinz Maier-Leibnitz and graduated in 1955. He then went to the Max Planck Institute for Medical Research in Heidelberg. Since this institute, not being part of a university, had no right to award a doctorate, Mössbauer remained under the auspices of Maier-Leibnitz, who was his official thesis advisor when he passed his PhD exam in Munich in 1958. In his PhD work, he discovered ''recoilless nuclear fluorescence of gamma rays in 191 iridium,'' the Mössbauer ef ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fluorescence
Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, than the absorbed radiation. A perceptible example of fluorescence occurs when the absorbed radiation is in the ultraviolet region of the electromagnetic spectrum (invisible to the human eye), while the emitted light is in the visible spectrum, visible region; this gives the fluorescent substance a distinct color that can only be seen when the substance has been exposed to blacklight, UV light. Fluorescent materials cease to glow nearly immediately when the radiation source stops, unlike phosphorescence, phosphorescent materials, which continue to emit light for some time after. Fluorescence has many practical applications, including mineralogy, gemology, medicine, chemical sensors (fluorescence spectroscopy), fluorescent labelling, dyes, bio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pound–Rebka Experiment
The Pound–Rebka experiment was an experiment in which gamma rays were emitted from the top of a tower and measured by a receiver at the bottom of the tower. The purpose of the experiment was to test Albert Einstein's theory of general relativity by showing that photons gain energy when traveling toward a gravitational source (the Earth). It was proposed by Robert Pound and his graduate student Glen A. Rebka Jr. in 1959, and was the last of the classical tests of general relativity to be verified (in the same year). It is a gravitational redshift experiment, which measures the change of frequency of light moving in a gravitational field. In this experiment, the frequency shift was a blueshift toward a higher frequency. Equivalently, the test demonstrated the general relativity prediction that clocks should run at different rates in different places of a gravitational field. It is considered to be the experiment that ushered in an era of precision tests of general relativity. Ove ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nuclear Spectroscopy
Nuclear spectroscopy is a superordinate concept of methods that uses properties of a nucleus to probe material properties. By emission or absorption of radiation from the nucleus information of the local structure is obtained, as an interaction of an atom with its closest neighbours. Or a radiation spectrum of the nucleus is detected. Most methods base on hyperfine interactions, which are the interaction of the nucleus with its interaction of its atom's electrons and their interaction with the nearest neighbor atoms as well as external fields. Nuclear spectroscopy is mainly applied to solids and liquids, rarely in gases. Its methods are important tools in condensed matter physics and solid state chemistry. Methods In nuclear physics these methods are used to study properties of the nucleus itself. Methods for studies of the nucleus: * Gamma spectroscopy * Hypernuclear spectroscopy Methods for condensed matter studies: * Nuclear magnetic resonance (NMR) * Mössbauer spectrosc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Perturbed Angular Correlation
The perturbed γ-γ angular correlation, PAC for short or PAC-Spectroscopy, is a method of nuclear solid-state physics with which magnetic and electric fields in crystal structures can be measured. In doing so, electrical field gradients and the Larmor frequency in magnetic fields as well as dynamic effects are determined. With this very sensitive method, which requires only about 10-1000 billion atoms of a radioactive isotope per measurement, material properties in the local structure, phase transitions, magnetism and diffusion can be investigated. The PAC method is related to nuclear magnetic resonance and the Mössbauer effect, but shows no signal attenuation at very high temperatures. Today only the time-differential perturbed angular correlation (TDPAC) is used. History and development PAC goes back to a theoretical work by Donald R. Hamilton from 1940. The first successful experiment was carried out by Brady and Deutsch in 1947. Essentially spin and parity of nuclear sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isomeric Shift
The isomeric shift (also called isomer shift) is the shift on atomic spectral lines and gamma spectral lines, which occurs as a consequence of replacement of one nuclear isomer by another. It is usually called isomeric shift on atomic spectral lines and Mössbauer isomeric shift respectively. If the spectra also have hyperfine structure the shift refers to the center of gravity of the spectra. The isomeric shift provides important information about the nuclear structure and the physical, chemical or biological environment of atoms. More recently the effect has also been proposed as a tool in the search for the time variation of fundamental constants of nature. Isomeric shift on atomic spectral lines The isomeric shift on atomic spectral lines is the energy or frequency shift in atomic spectra, which occurs when one replaces one nuclear isomer by another. The effect was predicted by Richard M. Weiner in 1956, whose calculations showed that it should be measurable by atomic (optical) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chromophore
A chromophore is the part of a molecule responsible for its color. The color that is seen by our eyes is the one not absorbed by the reflecting object within a certain wavelength spectrum of visible light. The chromophore is a region in the molecule where the energy difference between two separate molecular orbitals falls within the range of the visible spectrum. Visible light that hits the chromophore can thus be absorbed by exciting an electron from its ground state into an excited state. In biological molecules that serve to capture or detect light energy, the chromophore is the moiety that causes a conformational change in the molecule when hit by light. Conjugated pi-bond system chromophores Just like how two adjacent p-orbitals in a molecule will form a pi-bond, three or more adjacent p-orbitals in a molecule can form a conjugated pi-system. In a conjugated pi-system, electrons are able to capture certain photons as the electrons resonate along a certain di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zero-phonon Line And Phonon Sideband
The zero-phonon line and the phonon sideband jointly constitute the line shape of individual light absorbing and emitting molecules (chromophores) embedded into a transparent solid matrix. When the host matrix contains many chromophores, each will contribute a zero-phonon line and a phonon sideband to the absorption and emission spectra. The spectra originating from a collection of identical chromophores in a matrix is said to be inhomogeneously broadened because each chromophore is surrounded by a somewhat different matrix environment which modifies the energy required for an electronic transition. In an inhomogeneous distribution of chromophores, individual zero-phonon line and phonon sideband positions are therefore shifted and overlapping. Figure 1 shows the typical line shape for electronic transitions of individual chromophores in a solid matrix. The zero-phonon line is located at a frequency ω’ determined by the intrinsic difference in energy levels between ground and e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lamb–Mössbauer Factor
In physics, the Lamb–Mössbauer factor (LMF, after Willis Lamb and Rudolf Mössbauer) or elastic incoherent structure factor (EISF) is the ratio of elastic to total incoherent neutron scattering, or the ratio of recoil-free to total nuclear resonant absorption in Mössbauer spectroscopy. The corresponding factor for coherent neutron or X-ray scattering is the Debye–Waller factor; often, that term is used in a more generic way to include the incoherent case as well. When first reporting on recoil-free resonance absorption, Mössbauer (1959) cited relevant theoretical work by Lamb (1939). The first use of the term "Mössbauer–Lamb factor" seems to be by Tzara (1961); from 1962 on, the form "Lamb–Mössbauer factor" came into widespread use. Singwi and Sjölander (1960) pointed out the close relation to incoherent neutron scattering. With the invention of backscattering spectrometers, it became possible to measure the Lamb–Mössbauer factor as a function of the wavenumber ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Phonon
In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechanical quantization of the modes of vibrations for elastic structures of interacting particles. Phonons can be thought of as quantized sound waves, similar to photons as quantized light waves. The study of phonons is an important part of condensed matter physics. They play a major role in many of the physical properties of condensed matter systems, such as thermal conductivity and electrical conductivity, as well as in models of neutron scattering and related effects. The concept of phonons was introduced in 1932 by Soviet physicist Igor Tamm. The name ''phonon'' comes from the Greek word (), which translates to ''sound'' or ''voice'', because long-wavelength phonons give rise to sound. The name is analogous to the word ''photon''. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]