Mössbauer Effect
   HOME

TheInfoList



OR:

The Mössbauer effect, or recoilless nuclear resonance fluorescence, is a physical phenomenon discovered by
Rudolf Mössbauer Rudolf Ludwig Mössbauer (German spelling: ''Mößbauer''; ; 31 January 1929 – 14 September 2011) was a German physicist best known for his 1957 discovery of ''recoilless nuclear resonance fluorescence'' for which he was awarded the 1961 Nobe ...
in 1958. It involves the resonant and
recoil Recoil (often called knockback, kickback or simply kick) is the rearward thrust generated when a gun is being discharged. In technical terms, the recoil is a result of conservation of momentum, as according to Newton's third law the force requ ...
-free emission and absorption of
gamma radiation A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically s ...
by atomic nuclei bound in a solid. Its main application is in
Mössbauer spectroscopy Mössbauer spectroscopy is a spectroscopic technique based on the Mössbauer effect. This effect, discovered by Rudolf Mössbauer (sometimes written "Moessbauer", German: "Mößbauer") in 1958, consists of the nearly recoil-free emission and abso ...
. In the Mössbauer effect, a narrow resonance for nuclear gamma emission and absorption results from the momentum of recoil being delivered to a surrounding
crystal lattice In geometry and crystallography, a Bravais lattice, named after , is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by : \mathbf = n_1 \mathbf_1 + n_2 \mathbf_2 + n ...
rather than to the emitting or absorbing nucleus alone. When this occurs, no gamma energy is lost to the kinetic energy of recoiling nuclei at either the emitting or absorbing end of a gamma transition: emission and absorption occur at the same energy, resulting in strong, resonant absorption.


History

The emission and absorption of
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s by gases had been observed previously, and it was expected that a similar phenomenon would be found for
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
s, which are created by
nuclear Nuclear may refer to: Physics Relating to the nucleus of the atom: * Nuclear engineering *Nuclear physics *Nuclear power *Nuclear reactor *Nuclear weapon *Nuclear medicine *Radiation therapy *Nuclear warfare Mathematics *Nuclear space *Nuclear ...
transitions (as opposed to X-rays, which are typically produced by electronic transitions). However, attempts to observe nuclear resonance produced by gamma-rays in gases failed due to energy being lost to recoil, preventing resonance (the
Doppler effect The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who d ...
also broadens the gamma-ray spectrum). Mössbauer was able to observe resonance in nuclei of solid
iridium Iridium is a chemical element with the symbol Ir and atomic number 77. A very hard, brittle, silvery-white transition metal of the platinum group, it is considered the second-densest naturally occurring metal (after osmium) with a density of ...
, which raised the question of why gamma-ray resonance was possible in solids, but not in gases. Mössbauer proposed that, for the case of atoms bound into a solid, under certain circumstances a fraction of the nuclear events could occur essentially without recoil. He attributed the observed resonance to this recoil-free fraction of nuclear events. The Mössbauer effect was one of the last major discoveries in physics to be originally reported in the German language. The first report in English was a letter describing a repetition of the experiment. The discovery was rewarded with the
Nobel Prize in Physics ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
in 1961 together with
Robert Hofstadter Robert Hofstadter (February 5, 1915 – November 17, 1990) was an American physicist. He was the joint winner of the 1961 Nobel Prize in Physics (together with Rudolf Mössbauer) "for his pioneering studies of electron scattering in atomic nucle ...
's research of
electron scattering Electron scattering occurs when electrons are deviated from their original trajectory. This is due to the electrostatic forces within matter interaction or, if an external magnetic field is present, the electron may be deflected by the Lorentz fo ...
in atomic nuclei.


Description

In general, gamma rays are produced by nuclear transitions from an unstable high-energy state to a stable low-energy state. The energy of the emitted gamma ray corresponds to the energy of the nuclear transition, minus an amount of energy that is lost as recoil to the emitting atom. If the lost recoil energy is small compared with the energy
linewidth A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to iden ...
of the nuclear transition, then the gamma ray energy still corresponds to the energy of the nuclear transition, and the gamma ray can be absorbed by a second atom of the same type as the first. This emission and subsequent absorption is called
resonant Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscillatin ...
fluorescence Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, tha ...
. Additional recoil energy is also lost during absorption, so in order for resonance to occur the recoil energy must actually be less than half the linewidth for the corresponding nuclear transition. The amount of energy in the recoiling body () can be found from momentum conservation: :, P_\mathrm, = , P_\mathrm, \, where is the momentum of the recoiling matter, and the momentum of the gamma ray. Substituting energy into the equation gives: :E_\mathrm = \frac where ( for ) is the energy lost as recoil, is the energy of the gamma ray ( for ), ( for ) is the mass of the emitting or absorbing body, and ''c'' is the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
. In the case of a gas the emitting and absorbing bodies are atoms, so the mass is relatively small, resulting in a large recoil energy, which prevents resonance. (Note that the same equation applies for recoil energy losses in x-rays, but the photon energy is much less, resulting in a lower energy loss, which is why gas-phase resonance could be observed with x-rays.) In a solid, the nuclei are bound to the lattice and do not recoil in the same way as in a gas. The lattice as a whole recoils but the recoil energy is negligible because the in the above equation is the mass of the whole lattice. However, the energy in a decay can be taken up or supplied by lattice vibrations. The energy of these vibrations is quantised in units known as
phonon In physics, a phonon is a collective excitation in a periodic, Elasticity (physics), elastic arrangement of atoms or molecules in condensed matter physics, condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phon ...
s. The Mössbauer effect occurs because there is a finite probability of a decay occurring involving no phonons. Thus in a fraction of the nuclear events (the recoil-free fraction, given by the
Lamb–Mössbauer factor In physics, the Lamb–Mössbauer factor (LMF, after Willis Lamb and Rudolf Mössbauer) or elastic incoherent structure factor (EISF) is the ratio of elastic to total incoherent neutron scattering, or the ratio of recoil-free to total nuclear resona ...
), the entire crystal acts as the recoiling body, and these events are essentially recoil-free. In these cases, since the recoil energy is negligible, the emitted gamma rays have the appropriate energy and resonance can occur. In general (depending on the half-life of the decay), gamma rays have very narrow linewidths. This means they are very sensitive to small changes in the energies of nuclear transitions. In fact, gamma rays can be used as a probe to observe the effects of interactions between a nucleus and its electrons and those of its neighbors. This is the basis for Mössbauer spectroscopy, which combines the Mössbauer effect with the
Doppler effect The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who d ...
to monitor such interactions. Zero-phonon optical transitions, a process closely analogous to the Mössbauer effect, can be observed in lattice-bound
chromophore A chromophore is the part of a molecule responsible for its color. The color that is seen by our eyes is the one not absorbed by the reflecting object within a certain wavelength spectrum of visible light. The chromophore is a region in the molec ...
s at low temperatures.


See also

*
Isomeric shift The isomeric shift (also called isomer shift) is the shift on atomic spectral lines and gamma spectral lines, which occurs as a consequence of replacement of one nuclear isomer by another. It is usually called isomeric shift on atomic spectral line ...
*
Mössbauer spectroscopy Mössbauer spectroscopy is a spectroscopic technique based on the Mössbauer effect. This effect, discovered by Rudolf Mössbauer (sometimes written "Moessbauer", German: "Mößbauer") in 1958, consists of the nearly recoil-free emission and abso ...
*
Perturbed angular correlation The perturbed γ-γ angular correlation, PAC for short or PAC-Spectroscopy, is a method of nuclear solid-state physics with which magnetic and electric fields in crystal structures can be measured. In doing so, electrical field gradients and the L ...
*
Nuclear spectroscopy Nuclear spectroscopy is a superordinate concept of methods that uses properties of a nucleus to probe material properties. By emission or absorption of radiation from the nucleus information of the local structure is obtained, as an interaction of ...
*
Pound–Rebka experiment The Pound–Rebka experiment was an experiment in which gamma rays were emitted from the top of a tower and measured by a receiver at the bottom of the tower. The purpose of the experiment was to test Albert Einstein's theory of general relativit ...
* Mössbauer rotor experiments


References


Further reading

* * * * * * *


External links

* {{DEFAULTSORT:Mossbauer Effect Condensed matter physics Nuclear physics Physical phenomena