Molybdenum(VI) Chloride
   HOME
*





Molybdenum(VI) Chloride
Molybdenum(VI) chloride is the inorganic compound with the formula MoCl6. It is a black diamagnetic solid. The molecules adopt an octahedral structure as seen in β- tungsten(VI) chloride. Preparation and reactions Molybdenum(VI) chloride is prepared from the molybdenum hexafluoride with excess boron trichloride: : MoF6 + 3 BCl3 → MoCl6 + 3 BF2Cl It is unstable at room temperature with respect to molybdenum(V) chloride Molybdenum(V) chloride is the inorganic compound with the empirical formula . This dark volatile solid is used in research to prepare other molybdenum compounds. It is moisture-sensitive and soluble in chlorinated solvents. Structure Usually call ... and decomposition completes within several days: :2 MoCl6 → oCl5sub>2 + Cl2 The treatment of with bismuth trichloride also produces MoCl6. References {{Chlorides Molybdenum(VI) compounds Chlorides Molybdenum halides ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inorganic Compound
In chemistry, an inorganic compound is typically a chemical compound that lacks carbon–hydrogen bonds, that is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as '' inorganic chemistry''. Inorganic compounds comprise most of the Earth's crust, although the compositions of the deep mantle remain active areas of investigation. Some simple carbon compounds are often considered inorganic. Examples include the allotropes of carbon (graphite, diamond, buckminsterfullerene, etc.), carbon monoxide, carbon dioxide, carbides, and the following salts of inorganic anions: carbonates, cyanides, cyanates, and thiocyanates. Many of these are normal parts of mostly organic systems, including organisms; describing a chemical as inorganic does not necessarily mean that it does not occur within living things. History Friedrich Wöhler's conversion of ammonium cyanate into urea in 1828 is often cited as the starting point of modern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tungsten Hexachloride
Tungsten hexachloride is the chemical compound of tungsten and chlorine with the formula WCl6. This dark violet blue species exists as a volatile solid under standard conditions. It is an important starting reagent in the preparation of tungsten compounds. Other examples of charge-neutral hexachlorides are rhenium(VI) chloride and molybdenum(VI) chloride. The highly volatile tungsten hexafluoride is also known. As a d0 ion, W(VI) forms diamagnetic derivatives. The hexachloride is octahedral with equivalent W–Cl distances of 2.24–2.26 Å. Preparation Tungsten hexachloride can be prepared by chlorinating tungsten metal in a sealed tube at 600 °C: : W + 3 Cl2 → WCl6 Properties and Reactions Tungsten (VI) chloride is a blue-black solid at room temperature. At lower temperatures, it becomes wine-red in color. A red form of the compound can be made by rapidly condensing its vapor, which reverts to the blue-black form on gentle heating. It is readily hydrolyzed, even ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Molybdenum Hexafluoride
Molybdenum hexafluoride, also molybdenum(VI) fluoride, is the inorganic compound with the formula MoF6. It is the highest fluoride of molybdenum. It is a colourless solid and melts just below room temperature and boils in 34 °C. It is one of the seventeen known binary hexafluorides. Synthesis Molybdenum hexafluoride is made by direct reaction of molybdenum metal in an excess of elemental fluorine: : + 3 → Typical impurities are MoO2F2 and MoOF4, reflecting the tendency of the hexafluoride to hydrolyze. Description At −140 °C, it crystallizes in the orthorhombic space group ''Pnma''. Lattice parameters are ''a'' = 9.394  Å, ''b'' = 8.543 Å, and ''c'' = 4.959 Å. There are four formula units (in this case, discrete molecules) per unit cell, giving a density of 3.50 g·cm−3. The fluorine atoms are arranged in the hexagonal close packing. In liquid and gas phase, MoF6 adopt octahedral molecular g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boron Trichloride
Boron trichloride is the inorganic compound with the formula BCl3. This colorless gas is a reagent in organic synthesis. It is highly reactive toward water. Production and structure Boron reacts with halogens to give the corresponding trihalides. Boron trichloride is, however, produced industrially by direct chlorination of boron oxide and carbon at 501 °C. :B2O3 + 3 C + 3 Cl2 → 2 BCl3 + 3 CO The carbothermic reaction is analogous to the Kroll process for the conversion of titanium dioxide to titanium tetrachloride. In the laboratory BF3 reacted with AlCl3 gives BCl3 via halogen exchange. BCl3 is a trigonal planar molecule like the other boron trihalides, and has a bond length of 175pm. A degree of π-bonding has been proposed to explain the short B− Cl distance although there is some debate as to its extent. It does not dimerize, although NMR studies of mixtures of boron trihalides shows the presence of mixed halides. The absence of dimerisation contrasts with the t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Molybdenum(V) Chloride
Molybdenum(V) chloride is the inorganic compound with the empirical formula . This dark volatile solid is used in research to prepare other molybdenum compounds. It is moisture-sensitive and soluble in chlorinated solvents. Structure Usually called molybdenum pentachloride, it is in fact partly a dimer with the molecular formula . In the dimer, each molybdenum has local octahedral symmetry and two chlorides bridge between the molybdenum centers. A similar structure is also found for the pentachlorides of W, Nb and Ta. In the gas phase and partly in solution, the dimers partially dissociate to give a monomeric . The monomer is paramagnetic, with one unpaired electron per Mo center, reflecting the fact that the formal oxidation state is +5, leaving one valence electron on the metal center. Preparation and properties is prepared by chlorination of Mo metal but also chlorination of . The unstable hexachloride is not produced in this way. is reduced by acetonitrile to afford an or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bismuth Trichloride
Bismuth chloride (or butter of bismuth) is an inorganic compound with the chemical formula BiCl3. It is a covalent compound and is the common source of the Bi3+ ion. In the gas phase and in the crystal, the species adopts a pyramidal structure, in accord with VSEPR theory. Preparation Bismuth chloride can be synthesized directly by passing chlorine over bismuth. :2 Bi + 3 Cl2 → 2 BiCl3 or by dissolving bismuth metal in aqua regia, evaporating the mixture to give BiCl3·2H2O, which can be distilled to form the anhydrous trichloride. Alternatively, it may be prepared by adding hydrochloric acid to bismuth oxide and evaporating the solution. :Bi2O3 + 6 HCl → 2 BiCl3 + 3 H2O Also, the compound can be prepared by dissolving bismuth in concentrated nitric acid and then adding solid sodium chloride into this solution. :Bi + 6 HNO3 → Bi(NO3)3 + 3 H2O + 3 NO2 :Bi(NO3)3 + 3 NaCl → BiCl3 + 3 NaNO3 Structure In the gas phase BiCl3 is pyramidal with a Cl–Bi–Cl angle of 97. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Molybdenum(VI) Compounds
Molybdenum is a chemical element with the symbol Mo and atomic number 42 which is located in period 5 and group 6. The name is from Neo-Latin ''molybdaenum'', which is based on Ancient Greek ', meaning lead, since its ores were confused with lead ores. Molybdenum minerals have been known throughout history, but the element was discovered (in the sense of differentiating it as a new entity from the mineral salts of other metals) in 1778 by Carl Wilhelm Scheele. The metal was first isolated in 1781 by Peter Jacob Hjelm. Molybdenum does not occur naturally as a free metal on Earth; it is found only in various oxidation states in minerals. The free element, a silvery metal with a grey cast, has the sixth-highest melting point of any element. It readily forms hard, stable carbides in alloys, and for this reason most of the world production of the element (about 80%) is used in steel alloys, including high-strength alloys and superalloys. Most molybdenum compounds have low solubility ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chlorides
The chloride ion is the anion (negatively charged ion) Cl−. It is formed when the element chlorine (a halogen) gains an electron or when a compound such as hydrogen chloride is dissolved in water or other polar solvents. Chloride salts such as sodium chloride are often very soluble in water.Green, John, and Sadru Damji. "Chapter 3." ''Chemistry''. Camberwell, Vic.: IBID, 2001. Print. It is an essential electrolyte located in all body fluids responsible for maintaining acid/base balance, transmitting nerve impulses and regulating liquid flow in and out of cells. Less frequently, the word ''chloride'' may also form part of the "common" name of chemical compounds in which one or more chlorine atoms are covalently bonded. For example, methyl chloride, with the standard name chloromethane (see IUPAC books) is an organic compound with a covalent C−Cl bond in which the chlorine is not an anion. Electronic properties A chloride ion (diameter 167  pm) is much larger than ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]