HOME
*





Model Evidence
A marginal likelihood is a likelihood function that has been integrated over the parameter space. In Bayesian statistics, it represents the probability of generating the observed sample from a prior and is therefore often referred to as model evidence or simply evidence. Concept Given a set of independent identically distributed data points \mathbf=(x_1,\ldots,x_n), where x_i \sim p(x, \theta) according to some probability distribution parameterized by \theta, where \theta itself is a random variable described by a distribution, i.e. \theta \sim p(\theta\mid\alpha), the marginal likelihood in general asks what the probability p(\mathbf\mid\alpha) is, where \theta has been marginalized out (integrated out): :p(\mathbf\mid\alpha) = \int_\theta p(\mathbf\mid\theta) \, p(\theta\mid\alpha)\ \operatorname\!\theta The above definition is phrased in the context of Bayesian statistics in which case p(\theta\mid\alpha) is called prior density and p(\mathbf\mid\theta) is the likelihood. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Likelihood Function
The likelihood function (often simply called the likelihood) represents the probability of random variable realizations conditional on particular values of the statistical parameters. Thus, when evaluated on a given sample, the likelihood function indicates which parameter values are more ''likely'' than others, in the sense that they would have made the observed data more probable. Consequently, the likelihood is often written as \mathcal(\theta\mid X) instead of P(X \mid \theta), to emphasize that it is to be understood as a function of the parameters \theta instead of the random variable X. In maximum likelihood estimation, the arg max of the likelihood function serves as a point estimate for \theta, while local curvature (approximated by the likelihood's Hessian matrix) indicates the estimate's precision. Meanwhile in Bayesian statistics, parameter estimates are derived from the converse of the likelihood, the so-called posterior probability, which is calculated via Baye ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monte Carlo Method
Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. They are often used in physical and mathematical problems and are most useful when it is difficult or impossible to use other approaches. Monte Carlo methods are mainly used in three problem classes: optimization, numerical integration, and generating draws from a probability distribution. In physics-related problems, Monte Carlo methods are useful for simulating systems with many coupled degrees of freedom, such as fluids, disordered materials, strongly coupled solids, and cellular structures (see cellular Potts model, interacting particle systems, McKean–Vlasov processes, kinetic models of gases). Other examples include modeling phenomena with significant uncertainty in inputs such as the calculation of ris ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bayesian Information Criterion
In statistics, the Bayesian information criterion (BIC) or Schwarz information criterion (also SIC, SBC, SBIC) is a criterion for model selection among a finite set of models; models with lower BIC are generally preferred. It is based, in part, on the likelihood function and it is closely related to the Akaike information criterion (AIC). When fitting models, it is possible to increase the likelihood by adding parameters, but doing so may result in overfitting. Both BIC and AIC attempt to resolve this problem by introducing a penalty term for the number of parameters in the model; the penalty term is larger in BIC than in AIC for sample sizes greater than 7. The BIC was developed by Gideon E. Schwarz and published in a 1978 paper, where he gave a Bayesian argument for adopting it. Definition The BIC is formally defined as : \mathrm = k\ln(n) - 2\ln(\widehat L). \ where *\hat L = the maximized value of the likelihood function of the model M, i.e. \hat L=p(x\mid\widehat\th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Marginal Probability
In probability theory and statistics, the marginal distribution of a subset of a collection of random variables is the probability distribution of the variables contained in the subset. It gives the probabilities of various values of the variables in the subset without reference to the values of the other variables. This contrasts with a conditional distribution, which gives the probabilities contingent upon the values of the other variables. Marginal variables are those variables in the subset of variables being retained. These concepts are "marginal" because they can be found by summing values in a table along rows or columns, and writing the sum in the margins of the table. The distribution of the marginal variables (the marginal distribution) is obtained by marginalizing (that is, focusing on the sums in the margin) over the distribution of the variables being discarded, and the discarded variables are said to have been marginalized out. The context here is that the theore ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lindley's Paradox
Lindley's paradox is a counterintuitive situation in statistics in which the Bayesian and frequentist approaches to a hypothesis testing problem give different results for certain choices of the prior distribution. The problem of the disagreement between the two approaches was discussed in Harold Jeffreys' 1939 textbook; it became known as Lindley's paradox after Dennis Lindley called the disagreement a paradox in a 1957 paper. Although referred to as a ''paradox'', the differing results from the Bayesian and frequentist approaches can be explained as using them to answer fundamentally different questions, rather than actual disagreement between the two methods. Nevertheless, for a large class of priors the differences between the frequentist and Bayesian approach are caused by keeping the significance level fixed: as even Lindley recognized, "the theory does not justify the practice of keeping the significance level fixed'' and even "some computations by Prof. Pearson in the d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Empirical Bayes Methods
Empirical Bayes methods are procedures for statistical inference in which the prior probability distribution is estimated from the data. This approach stands in contrast to standard Bayesian methods, for which the prior distribution is fixed before any data are observed. Despite this difference in perspective, empirical Bayes may be viewed as an approximation to a fully Bayesian treatment of a hierarchical model wherein the parameters at the highest level of the hierarchy are set to their most likely values, instead of being integrated out. Empirical Bayes, also known as maximum marginal likelihood, represents a convenient approach for setting hyperparameters, but has been mostly supplanted by fully Bayesian hierarchical analyses since the 2000s with the increasing availability of well-performing computation techniques. Introduction Empirical Bayes methods can be seen as an approximation to a fully Bayesian treatment of a hierarchical Bayes model. In, for example, a two-stag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Odds
Odds provide a measure of the likelihood of a particular outcome. They are calculated as the ratio of the number of events that produce that outcome to the number that do not. Odds are commonly used in gambling and statistics. Odds also have a simple relation with probability: the odds of an outcome are the ratio of the probability that the outcome occurs to the probability that the outcome does not occur. In mathematical terms, where p is the probability of the outcome: :\text = \frac where 1-p is the probability that the outcome does not occur. Odds can be demonstrated by examining rolling a six-sided die. The odds of rolling a 6 is 1:5. This is because there is 1 event (rolling a 6) that produces the specified outcome of "rolling a 6", and 5 events that do not (rolling a 1,2,3,4 or 5). The odds of rolling either a 5 or 6 is 2:4. This is because there are 2 events (rolling a 5 or 6) that produce the specified outcome of "rolling either a 5 or 6", and 4 events that do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bayes Factor
The Bayes factor is a ratio of two competing statistical models represented by their marginal likelihood, and is used to quantify the support for one model over the other. The models in questions can have a common set of parameters, such as a null hypothesis and an alternative, but this is not necessary; for instance, it could also be a non-linear model compared to its linear approximation. The Bayes factor can be thought of as a Bayesian analog to the likelihood-ratio test, but since it uses the (integrated) marginal likelihood instead of the maximized likelihood, both tests only coincide under simple hypotheses (e.g., two specific parameter values). Also, in contrast with null hypothesis significance testing, Bayes factors support evaluation of evidence ''in favor'' of a null hypothesis, rather than only allowing the null to be rejected or not rejected. Although conceptually simple, the computation of the Bayes factor can be challenging depending on the complexity of the model ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bayesian Model Comparison
The Bayes factor is a ratio of two competing statistical models represented by their marginal likelihood, and is used to quantify the support for one model over the other. The models in questions can have a common set of parameters, such as a null hypothesis and an alternative, but this is not necessary; for instance, it could also be a non-linear model compared to its linear approximation. The Bayes factor can be thought of as a Bayesian analog to the likelihood-ratio test, but since it uses the (integrated) marginal likelihood instead of the maximized likelihood, both tests only coincide under simple hypotheses (e.g., two specific parameter values). Also, in contrast with null hypothesis significance testing, Bayes factors support evaluation of evidence ''in favor'' of a null hypothesis, rather than only allowing the null to be rejected or not rejected. Although conceptually simple, the computation of the Bayes factor can be challenging depending on the complexity of the model a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Prior Predictive Distribution
Prior (or prioress) is an ecclesiastical title for a superior in some religious orders. The word is derived from the Latin for "earlier" or "first". Its earlier generic usage referred to any monastic superior. In abbeys, a prior would be lower in rank than the abbey's abbot or abbess. Monastic superiors In the Rule of Saint Benedict, the term appears several times, referring to any superior, whether an abbot, provost, dean, etc. In other old monastic rules the term is used in the same generic sense. With the Cluniac Reforms, the term ''prior'' received a specific meaning; it supplanted the provost or dean (''praepositus''), spoken of in the Rule of St. Benedict. The example of the Cluniac congregations was gradually followed by all Benedictine monasteries, as well as by the Camaldolese, Vallombrosians, Cistercians, Hirsau congregations, and other offshoots of the Benedictine Order. Monastic congregations of hermit origin generally do not use the title of abbot for th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


EM Algorithm
EM, Em or em may refer to: Arts and entertainment Music * EM, the E major musical scale * Em, the E minor musical scale * Electronic music, music that employs electronic musical instruments and electronic music technology in its production * Encyclopedia Metallum, an online metal music database * Eminem, American rapper Other uses in arts and entertainment * ''Em'' (comic strip), a comic strip by Maria Smedstad Companies and organizations * European Movement, an international lobbying association * Aero Benin (IATA code), a defunct airline * Empire Airlines (IATA code), a charter and cargo airline based in Idaho, US * Erasmus Mundus, an international student-exchange program * ExxonMobil, a large oil company formed from the merger of Exxon and Mobil in 1999 * La République En Marche! (sometimes shortened to "En Marche!"), a major French political party Economics * Emerging markets, nations undergoing rapid industrialization Language and typography Language * M, a lette ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metropolis–Hastings Algorithm
In statistics and statistical physics, the Metropolis–Hastings algorithm is a Markov chain Monte Carlo (MCMC) method for obtaining a sequence of random samples from a probability distribution from which direct sampling is difficult. This sequence can be used to approximate the distribution (e.g. to generate a histogram) or to compute an integral (e.g. an expected value). Metropolis–Hastings and other MCMC algorithms are generally used for sampling from multi-dimensional distributions, especially when the number of dimensions is high. For single-dimensional distributions, there are usually other methods (e.g. adaptive rejection sampling) that can directly return independent samples from the distribution, and these are free from the problem of autocorrelated samples that is inherent in MCMC methods. History The algorithm was named after Nicholas Metropolis and W.K. Hastings. Metropolis was the first author to appear on the list of authors of the 1953 article '' Equatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]