HOME
*



picture info

Modal Testing
Modal testing is the form of vibration testing of an object whereby the natural (modal) frequencies, modal masses, modal damping ratios and mode shapes of the object under test are determined. A modal test consists of an acquisition phase and an analysis phase. The complete process is often referred to as a Modal Analysis or Experimental Modal Analysis. There are several ways to do modal testing but impact hammer testing and shaker (vibration tester) testing are commonplace. In both cases energy is supplied to the system with a known frequency content. Where structural resonances occur there will be an amplification of the response, clearly seen in the response spectra. Using the response spectra and force spectra, a transfer function can be obtained. The transfer function (or frequency response function (FRF)) is often curve fitted to estimate the modal parameters; however, there are many methods of modal parameter estimation and it is the topic of much research. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vibration Testing
Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. The word comes from Latin ''vibrationem'' ("shaking, brandishing"). The oscillations may be periodic, such as the motion of a pendulum—or random, such as the movement of a tire on a gravel road. Vibration can be desirable: for example, the motion of a tuning fork, the reed in a woodwind instrument or harmonica, a mobile phone, or the cone of a loudspeaker. In many cases, however, vibration is undesirable, wasting energy and creating unwanted sound. For example, the vibrational motions of engines, electric motors, or any mechanical device in operation are typically unwanted. Such vibrations could be caused by imbalances in the rotating parts, uneven friction, or the meshing of gear teeth. Careful designs usually minimize unwanted vibrations. The studies of sound and vibration are closely related. Sound, or pressure waves, are generated by vibrating structures (e.g. vocal cords); the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Civil Engineering
Civil engineering is a professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment, including public works such as roads, bridges, canals, dams, airports, sewage systems, pipelines, structural components of buildings, and railways. Civil engineering is traditionally broken into a number of sub-disciplines. It is considered the second-oldest engineering discipline after military engineering, and it is defined to distinguish non-military engineering from military engineering. Civil engineering can take place in the public sector from municipal public works departments through to federal government agencies, and in the private sector from locally based firms to global Fortune 500 companies. History Civil engineering as a discipline Civil engineering is the application of physical and scientific principles for solving the problems of society, and its history is intricately linked to advances i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Wave Mechanics
Wave mechanics may refer to: * the mechanics of waves * the ''wave equation'' in quantum physics, see Schrödinger equation See also * Quantum mechanics * Wave equation The (two-way) wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields — as they occur in classical physics — such as mechanical waves (e.g. water waves, sound waves and ... {{Disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shaker (testing Device)
A shaker is a device used in vibration testing to excite the structure, either for endurance testing or modal testing. References *Tongue, Benson, ''Principles of Vibration'', Oxford University Press, 2001, *Inman, Daniel J., ''Engineering Vibration'', Prentice Hall, 2001, *Rao, Singiresu, ''Mechanical Vibrations'', Addison Wesley, 1990, *Thompson, W.T., ''Theory of Vibrations'', Nelson Thornes Ltd, 1996, *Hartog, Den, ''Mechanical Vibrations'', Dover Publications, 1985, See also * Vibration Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. The word comes from Latin ''vibrationem'' ("shaking, brandishing"). The oscillations may be periodic, such as the motion of a pendulum—or random, su ... Tests {{technology-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shock Response Spectrum
A Shock Response Spectrum (SRS)Acronym
Acronym is a graphical representation of a , or any other transient acceleration input, in terms of how a Single Degree Of Freedom (SDOF) system (like a mass on a spring) would respond to that input. The horizontal axis shows the natural frequency of a hypothetical SDOF, and the vertical axis shows the peak acceleration which this SDOF would undergo as a consequence of the shock input.Explanation
Explanation


Calculation

The most direct and intuitive way to generate an SRS from a shock waveform is the following pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shock (mechanics)
A mechanical or physical shock is a sudden acceleration caused, for example, by impact, drop, kick, earthquake, or explosion. Shock is a transient physical excitation. Shock describes matter subject to extreme rates of force with respect to time. Shock is a vector that has units of an acceleration (rate of change of velocity). The unit ''g'' (or g) represents multiples of the acceleration of gravity and is conventionally used. A shock pulse can be characterised by its peak acceleration, the duration, and the shape of the shock pulse (half sine, triangular, trapezoidal, etc.). The shock response spectrum is a method for further evaluating a mechanical shock. Shock measurement Shock measurement is of interest in several fields such as *Propagation of heel shock through a runner's body *Measure the magnitude of a shock need to cause damage to an item: fragility. *Measure shock attenuation through athletic flooring *Measuring the effectiveness of a shock absorber *Measuring the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shock Absorber
A shock absorber or damper is a mechanical or hydraulic device designed to absorb and damp shock impulses. It does this by converting the kinetic energy of the shock into another form of energy (typically heat) which is then dissipated. Most shock absorbers are a form of dashpot (a damper which resists motion via viscous friction). Description Pneumatic and hydraulic shock absorbers are used in conjunction with cushions and springs. An automobile shock absorber contains spring-loaded check valves and orifices to control the flow of oil through an internal piston (see below). One design consideration, when designing or choosing a shock absorber, is where that energy will go. In most shock absorbers, energy is converted to heat inside the viscous fluid. In hydraulic cylinders, the hydraulic fluid heats up, while in air cylinders, the hot air is usually exhausted to the atmosphere. In other types of shock absorbers, such as electromagnetic types, the dissipated energy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cushioning
Package cushioning is used to protect items during shipment. Vibration and impact shock during shipment and loading/unloading are controlled by cushioning to reduce the chance of product damage. Cushioning is usually inside a shipping container such as a corrugated box. It is designed to absorb shock by crushing and deforming, and to dampen vibration, rather than transmitting the shock and vibration to the protected item. Depending on the specific situation, package cushioning is often between thick. Internal packaging materials are also used for functions other than cushioning, such as to immobilize the products in the box and lock them in place, or to fill a void. Design factors When designing packaging the choice of cushioning depends on many factors, including but not limited to: * effective protection of product from shock and vibration * resilience (whether it performs for multiple impacts) * resistance to creep – cushion deformation under static load * material costs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vibration
Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. The word comes from Latin ''vibrationem'' ("shaking, brandishing"). The oscillations may be periodic, such as the motion of a pendulum—or random, such as the movement of a tire on a gravel road. Vibration can be desirable: for example, the motion of a tuning fork, the reed in a woodwind instrument or harmonica, a mobile phone, or the cone of a loudspeaker. In many cases, however, vibration is undesirable, wasting energy and creating unwanted sound. For example, the vibrational motions of engines, electric motors, or any mechanical device in operation are typically unwanted. Such vibrations could be caused by imbalances in the rotating parts, uneven friction, or the meshing of gear teeth. Careful designs usually minimize unwanted vibrations. The studies of sound and vibration are closely related. Sound, or pressure waves, are generated by vibrating structures (e.g. vocal cords); t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Window Function
In signal processing and statistics, a window function (also known as an apodization function or tapering function) is a mathematical function that is zero-valued outside of some chosen interval, normally symmetric around the middle of the interval, usually near a maximum in the middle, and usually tapering away from the middle. Mathematically, when another function or waveform/data-sequence is "multiplied" by a window function, the product is also zero-valued outside the interval: all that is left is the part where they overlap, the "view through the window". Equivalently, and in actual practice, the segment of data within the window is first isolated, and then only that data is multiplied by the window function values. Thus, tapering, not segmentation, is the main purpose of window functions. The reasons for examining segments of a longer function include detection of transient events and time-averaging of frequency spectra. The duration of the segments is determined in ea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Newtons
The newton (symbol: N) is the unit of force in the International System of Units (SI). It is defined as 1 kg⋅m/s, the force which gives a mass of 1 kilogram an acceleration of 1 metre per second per second. It is named after Isaac Newton in recognition of his work on classical mechanics, specifically Newton's second law of motion. Definition A newton is defined as 1 kg⋅m/s (it is a derived unit which is defined in terms of the SI base units). One newton is therefore the force needed to accelerate one kilogram of mass at the rate of one metre per second squared in the direction of the applied force. The units "metre per second squared" can be understood as measuring a rate of change in velocity per unit of time, i.e. an increase in velocity by 1 metre per second every second. In 1946, Conférence Générale des Poids et Mesures (CGPM) Resolution 2 standardized the unit of force in the MKS system of units to be the amount needed to accelerate 1 kilogram of mass at the rat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simulation Table
A simulation table is an automotive test system specifically designed for the high-frequency testing of vehicle components. It is sometimes also called a Multi-Axis Shaker Table or MAST. They can simulate acceleration and displacement outputs and reproduce key data collected on proving grounds, by providing a full six degrees of freedom (6 DOF). These test systems consist of hexapod platform with a low resonance table on top. The test system can be used to simulate any kind of vibration in all six degrees of freedom. The movements of the test system are tightly controlled by a digital test controller. Simulation tables can be either electrical or hydraulical. Electric simulation table usually achieve a frequency range up to 25 Hz with a maximum payload of around 500 kilograms. For higher payloads or frequencies hydraulic Hydraulics (from Greek: Υδραυλική) is a technology and applied science using engineering, chemistry, and other sciences involving th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]