Microfunction
   HOME
*





Microfunction
Algebraic analysis is an area of mathematics that deals with systems of Partial differential equation, linear partial differential equations by using sheaf theory and complex analysis to study properties and generalizations of Function (mathematics), functions such as hyperfunctions and microfunctions. Semantically, it is the application of algebraic operations on analytic quantities. As a research programme, it was started by the Japanese mathematician Mikio Sato in 1959. This can be seen as an algebraic geometrization of analysis. It derives its meaning from the fact that the differential operator is right-invertible in several function spaces. It helps in the simplification of the proofs due to an algebraic description of the problem considered. Microfunction Let ''M'' be a Real number, real-analytic manifold of Manifold#Mathematical definition, dimension ''n'', and let ''X'' be its complexification. The sheaf of microlocal functions on ''M'' is given as :\mathcal^n(\mu_M(\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Microlocal Analysis
In mathematical analysis, microlocal analysis comprises techniques developed from the 1950s onwards based on Fourier transforms related to the study of variable-coefficients-linear and nonlinear partial differential equations. This includes generalized functions, pseudo-differential operators, wave front sets, Fourier integral operators, oscillatory integral operators, and paradifferential operators. The term ''microlocal'' implies localisation not only with respect to location in the space, but also with respect to cotangent space directions at a given point. This gains in importance on manifolds of dimension greater than one. See also *Algebraic analysis *Microfunction External linkslecture notes by Richard Melrose
Microlocal analysis, Fourier analysis Generalized functions {{Mathanalysis-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Microlocalization Functor
In mathematical analysis, microlocal analysis comprises techniques developed from the 1950s onwards based on Fourier transforms related to the study of variable-coefficients-linear and nonlinear partial differential equations. This includes generalized functions, pseudo-differential operators, wave front sets, Fourier integral operators, oscillatory integral operators, and paradifferential operators. The term ''microlocal'' implies localisation not only with respect to location in the space, but also with respect to cotangent space directions at a given point. This gains in importance on manifolds of dimension greater than one. See also *Algebraic analysis *Microfunction Algebraic analysis is an area of mathematics that deals with systems of Partial differential equation, linear partial differential equations by using sheaf theory and complex analysis to study properties and generalizations of Function (mathematic ... External linkslecture notes by Richard Melrose Fourie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperfunction
In mathematics, hyperfunctions are generalizations of functions, as a 'jump' from one holomorphic function to another at a boundary, and can be thought of informally as distributions of infinite order. Hyperfunctions were introduced by Mikio Sato in 1958 in Japanese, (1959, 1960 in English), building upon earlier work by Laurent Schwartz, Grothendieck and others. Formulation A hyperfunction on the real line can be conceived of as the 'difference' between one holomorphic function defined on the upper half-plane and another on the lower half-plane. That is, a hyperfunction is specified by a pair (''f'', ''g''), where ''f'' is a holomorphic function on the upper half-plane and ''g'' is a holomorphic function on the lower half-plane. Informally, the hyperfunction is what the difference f -g would be at the real line itself. This difference is not affected by adding the same holomorphic function to both ''f'' and ''g'', so if ''h'' is a holomorphic function on the whole compl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Function (mathematics)
In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the function and the set is called the codomain of the function.Codomain ''Encyclopedia of Mathematics'Codomain. ''Encyclopedia of Mathematics''/ref> The earliest known approach to the notion of function can be traced back to works of Persian mathematicians Al-Biruni and Sharaf al-Din al-Tusi. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hyperfunction
In mathematics, hyperfunctions are generalizations of functions, as a 'jump' from one holomorphic function to another at a boundary, and can be thought of informally as distributions of infinite order. Hyperfunctions were introduced by Mikio Sato in 1958 in Japanese, (1959, 1960 in English), building upon earlier work by Laurent Schwartz, Grothendieck and others. Formulation A hyperfunction on the real line can be conceived of as the 'difference' between one holomorphic function defined on the upper half-plane and another on the lower half-plane. That is, a hyperfunction is specified by a pair (''f'', ''g''), where ''f'' is a holomorphic function on the upper half-plane and ''g'' is a holomorphic function on the lower half-plane. Informally, the hyperfunction is what the difference f -g would be at the real line itself. This difference is not affected by adding the same holomorphic function to both ''f'' and ''g'', so if ''h'' is a holomorphic function on the whole compl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Analysis
Algebraic analysis is an area of mathematics that deals with systems of linear partial differential equations by using sheaf theory and complex analysis to study properties and generalizations of functions such as hyperfunctions and microfunctions. Semantically, it is the application of algebraic operations on analytic quantities. As a research programme, it was started by the Japanese mathematician Mikio Sato in 1959. This can be seen as an algebraic geometrization of analysis. It derives its meaning from the fact that the differential operator is right-invertible in several function spaces. It helps in the simplification of the proofs due to an algebraic description of the problem considered. Microfunction Let ''M'' be a real-analytic manifold of dimension ''n'', and let ''X'' be its complexification. The sheaf of microlocal functions on ''M'' is given as :\mathcal^n(\mu_M(\mathcal_X) \otimes \mathcal_) where * \mu_M denotes the microlocalization functor, * \mathcal_ is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sato's Hyperfunction
In mathematics, hyperfunctions are generalizations of functions, as a 'jump' from one holomorphic function to another at a boundary, and can be thought of informally as distributions of infinite order. Hyperfunctions were introduced by Mikio Sato in 1958 in Japanese, (1959, 1960 in English), building upon earlier work by Laurent Schwartz, Grothendieck and others. Formulation A hyperfunction on the real line can be conceived of as the 'difference' between one holomorphic function defined on the upper half-plane and another on the lower half-plane. That is, a hyperfunction is specified by a pair (''f'', ''g''), where ''f'' is a holomorphic function on the upper half-plane and ''g'' is a holomorphic function on the lower half-plane. Informally, the hyperfunction is what the difference f -g would be at the real line itself. This difference is not affected by adding the same holomorphic function to both ''f'' and ''g'', so if ''h'' is a holomorphic function on the whole compl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Localization Of A Ring
In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module ''R'', so that it consists of fractions \frac, such that the denominator ''s'' belongs to a given subset ''S'' of ''R''. If ''S'' is the set of the non-zero elements of an integral domain, then the localization is the field of fractions: this case generalizes the construction of the field \Q of rational numbers from the ring \Z of integers. The technique has become fundamental, particularly in algebraic geometry, as it provides a natural link to sheaf theory. In fact, the term ''localization'' originated in algebraic geometry: if ''R'' is a ring of functions defined on some geometric object (algebraic variety) ''V'', and one wants to study this variety "locally" near a point ''p'', then one considers the set ''S'' of all functions that are not zero at ''p'' and localizes ''R'' wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Vanishing Cycle
In mathematics, vanishing cycles are studied in singularity theory and other parts of algebraic geometry. They are those homology cycles of a smooth fiber in a family which vanish in the singular fiber. For example, in a map from a connected complex surface to the complex projective line, a generic fiber is a smooth Riemann surface of some fixed genus g and, generically, there will be isolated points in the target whose preimages are nodal curves. If one considers an isolated critical value and a small loop around it, in each fiber, one can find a smooth loop such that the singular fiber can be obtained by pinching that loop to a point. The loop in the smooth fibers gives an element of the first homology group of a surface, and the monodromy of the critical value is defined to be the monodromy of the first homology of the fibers as the loop is traversed, i.e. an invertible map of the first homology of a (real) surface of genus g. A classical result is the Picard–Lefschetz form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauss–Manin Connection
In mathematics, the Gauss–Manin connection is a connection on a certain vector bundle over a base space ''S'' of a family of algebraic varieties V_s. The fibers of the vector bundle are the de Rham cohomology groups H^k_(V_s) of the fibers V_s of the family. It was introduced by for curves ''S'' and by in higher dimensions. Flat sections of the bundle are described by differential equations; the best-known of these is the Picard–Fuchs equation, which arises when the family of varieties is taken to be the family of elliptic curves. In intuitive terms, when the family is locally trivial, cohomology classes can be moved from one fiber in the family to nearby fibers, providing the 'flat section' concept in purely topological terms. The existence of the connection is to be inferred from the flat sections. Intuition Consider a smooth morphism of schemes X\to B over characteristic 0. If we consider these spaces as complex analytic spaces, then the Ehresmann fibration theorem te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Algebra
In mathematics, differential rings, differential fields, and differential algebras are rings, fields, and algebras equipped with finitely many derivations, which are unary functions that are linear and satisfy the Leibniz product rule. A natural example of a differential field is the field of rational functions in one variable over the complex numbers, \mathbb(t), where the derivation is differentiation with respect to t. Differential algebra refers also to the area of mathematics consisting in the study of these algebraic objects and their use in the algebraic study of differential equations. Differential algebra was introduced by Joseph Ritt in 1950. Open problems The biggest open problems in the field include the Kolchin Catenary Conjecture, the Ritt Problem, and The Jacobi Bound Problem. All of these deal with the structure of differential ideals in differential rings. Differential ring A ''differential ring'' is a ring R equipped with one or more ''derivations'', whi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]