Methanococcus Jannaschii
   HOME
*





Methanococcus Jannaschii
''Methanocaldococcus jannaschii'' (formerly ''Methanococcus jannaschii'') is a thermophilic methanogenic archaean in the class Methanococci. It was the first archaeon to have its complete genome sequenced. The sequencing identified many genes unique to the archaea. Many of the synthesis pathways for methanogenic cofactors were worked out biochemically in this organism, as were several other archaeal-specific metabolic pathways. History ''Methanocaldococcus jannaschii'' was isolated from a submarine hydrothermal vent at Woods Hole Oceanographic Institution. Sequencing ''Methanocaldococcus jannaschii'' was sequenced by a group at TIGR led by Craig Venter using whole-genome shotgun sequencing. ''Methanocaldococcus jannaschii'' represented the first member of the Archaea to have its genome sequenced. According to Venter, the unique features of the genome provided strong evidence that there are three domains of life. Taxonomy ''Methanocaldoccus jannaschii'' is a member of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Archaea
Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaebacteria kingdom), but this term has fallen out of use. Archaeal cells have unique properties separating them from the other two domains, Bacteria and Eukaryota. Archaea are further divided into multiple recognized phyla. Classification is difficult because most have not been isolated in a laboratory and have been detected only by their gene sequences in environmental samples. Archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat, square cells of ''Haloquadratum walsbyi''. Despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Domain (biology)
In biological taxonomy, a domain ( or ) (Latin: ''regio''), also dominion, superkingdom, realm, or empire, is the highest taxonomic rank of all organisms taken together. It was introduced in the three-domain system of taxonomy devised by Carl Woese, Otto Kandler and Mark Wheelis in 1990. According to the domain system, the tree of life consists of either three domains such as Archaea, Bacteria, and Eukarya, or two domains consisting of Archaea and Bacteria, with Eukarya included in Archaea. The first two are all prokaryotes, single-celled microorganisms without a membrane-bound nucleus. All organisms that have a cell nucleus and other membrane-bound organelles are included in Eukarya. Non-cellular life is not included in this system. Alternatives to the three-domain system include the earlier two-empire system (with the empires Prokaryota and Eukaryota), and the eocyte hypothesis (with two domains of Bacteria and Archaea, with Eukarya included as a branch of Archaea). Term ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Proteomic
Proteomics is the large-scale study of proteins. Proteins are vital parts of living organisms, with many functions such as the formation of structural fibers of muscle tissue, enzymatic digestion of food, or synthesis and replication of DNA. In addition, other kinds of proteins include antibodies that protect an organism from infection, and hormones that send important signals throughout the body. The proteome is the entire set of proteins produced or modified by an organism or system. Proteomics enables the identification of ever-increasing numbers of proteins. This varies with time and distinct requirements, or stresses, that a cell or organism undergoes. Proteomics is an interdisciplinary domain that has benefited greatly from the genetic information of various genome projects, including the Human Genome Project. It covers the exploration of proteomes from the overall level of protein composition, structure, and activity, and is an important component of functional genomics. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annual Review Of Biochemistry
''Annual Review of Biochemistry'' is an annual peer reviewed scientific journal published by Annual Reviews, a nonprofit scientific publisher. Its first volume was published in 1932, and its founding editor was J. Murray Luck. The current editor is Roger D. Kornberg. The journal focuses on molecular biology and biological chemistry review articles. As of 2022, ''Journal Citation Reports'' gives the journal an impact factor of 27.258, ranking it fifth out of 296 journals in the category "Biochemistry and Molecular Biology". History The ''Annual Review of Biochemistry'' was the creation of Stanford University chemist and professor J. Murray Luck. In 1930, Luck offered a course on current research in biochemistry to graduate students. In designing the course, he said he felt "knee-deep in trouble", as he believed he was sufficiently knowledgeable in only a few areas of biochemistry. He considered the volume of research to be overwhelming; there were 6,500 abstracts regarding bioch ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coenzyme F420 Hydrogenase
In enzymology, a coenzyme F420 hydrogenase () is an enzyme that catalyzes the chemical reaction :H2 + coenzyme F420 \rightleftharpoons reduced coenzyme F420 Thus, the two substrates of this enzyme are H2 and coenzyme F420, whereas its product is reduced coenzyme F420. This enzyme belongs to the family of oxidoreductases, specifically those acting on hydrogen as donor with other, known, acceptors. The systematic name of this enzyme class is hydrogen:coenzyme F420 oxidoreductase. Other names in common use include 8-hydroxy-5-deazaflavin-reducing hydrogenase, F420-reducing hydrogenase, and coenzyme F420-dependent hydrogenase. This enzyme participates in folate biosynthesis and is a critical part of energy conservation in some methanogens such as Methanosarcina barkeri. It has 3 cofactors: iron, nickel, and deazaflavin Coenzyme F420 or 8-hydroxy-5-deazaflavin is a coenzyme (sometimes called a cofactor) involved in redox reactions in methanogens, in many Actinomycetota, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ferredoxin Hydrogenase
In enzymology, ferredoxin hydrogenase (), also referred to as e-Fe'' hydrogenase, H2 oxidizing hydrogenase, H2 producing hydrogenase, bidirectional hydrogenase, hydrogenase (ferredoxin), hydrogenlyase, and uptake hydrogenase, is found in ''Clostridium pasteurianum, Clostridium acetobutylicum,'' ''Chlamydomonas reinhardtii'', and other organisms. The systematic name of this enzyme is hydrogen:ferredoxin oxidoreductase Ferredoxin hydrogenase belongs to the family of oxidoreductases, specifically those acting on hydrogen as donor with an iron-sulfur protein as acceptor. Ferredoxin hydrogenase has an active metallocluster site referred to as an "H-cluster" or "H domain" that is involved in the inter-conversion of protons and electrons with hydrogen gas. Enzyme Reaction and Mechanism :Ferredoxin hydrogenase catalyzes the following reversible reaction: :H2 + 2 oxidized ferredoxin \rightleftharpoons 2 reduced ferredoxin + 2 H+ The exact mechanism by which this reaction occurs is st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


European Journal Of Biochemistry
''The FEBS Journal'' is a biweekly peer-reviewed scientific journal published by John Wiley & Sons on behalf of the Federation of European Biochemical Societies. It covers research on all aspects of biochemistry, molecular biology, cell biology, and the molecular bases of disease. The editor-in-chief is Seamus Martin (Trinity College Dublin), who took over from Richard Perham (University of Cambridge) in 2014. Content is available for free 1 year after publication, except review content, which is available immediately. The journal also publishes special and virtual issues focusing on a specific theme. Since 2021, the journal has given an annual award, "The FEBS Journal Richard Perham Prize", for an outstanding research paper published in the journal. The winners receive a €5,000 cash prize (to be divided equally between the first and last authors) and the senior author of the study is invited to give a talk at the FEBS Annual Congress. The journal also gives more frequent post ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




5,10-methenyltetrahydromethanopterin Hydrogenase
The 5,10-methenyltetrahydromethanopterin hydrogenase (or Hmd), the so-called iron-sulfur cluster-free hydrogenase, is an enzyme found in methanogenic archea such as ''Methanothermobacter marburgensis''. It was discovered and first characterized by the Thauer group at the Max Planck Institute in Marburg. Hydrogenases are enzymes that either reduce protons or oxidize molecular dihydrogen. Enzyme function Methanogens rely on such enzymes to catalyze the reduction of CO2 to methane. One step in methanogenesis entails conversion of a methenyl group (formic acid oxidation state) to a methylene group (formaldehyde oxidation state). Among the hydrogenase family of enzymes, Hmd is unique in that it does not directly reduce CO2 to CH4. The natural substrate of the enzyme is the organic compound methenyltetrahydromethanopterin. The organic compound includes a methenyl group bound to two tertiary amides. The methenyl group originated as CO2 before being incorporated into the substrate, wh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hydrogenase
A hydrogenase is an enzyme that catalyses the reversible oxidation of molecular hydrogen (H2), as shown below: Hydrogen uptake () is coupled to the reduction of electron acceptors such as oxygen, nitrate, sulfate, carbon dioxide (), and fumarate. On the other hand, proton reduction () is coupled to the oxidation of electron donors such as ferredoxin (FNR), and serves to dispose excess electrons in cells (essential in pyruvate fermentation). Both low-molecular weight compounds and proteins such as FNRs, cytochrome ''c''3, and cytochrome ''c''6 can act as physiological electron donors or acceptors for hydrogenases. Structural classification It has been estimated that 99% of all organisms utilize hydrogen, H2. Most of these species are microbes and their ability to use H2 as a metabolite arises from the expression of metalloenzymes known as hydrogenases. Hydrogenases are sub-classified into three different types based on the active site metal content: iron-iron hydrogenase, ni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Formate
Formate (IUPAC name: methanoate) is the conjugate base of formic acid. Formate is an anion () or its derivatives such as ester of formic acid. The salts and esters are generally colorless.Werner Reutemann and Heinz Kieczka "Formic Acid" in ''Ullmann's Encyclopedia of Industrial Chemistry'' 2002, Wiley-VCH, Weinheim. Fundamentals When dissolved in water, formic acid converts to formate: : Formate is a planar anion. The two oxygen atoms are equivalent and bear a partial negative charge. The remaining C-H bond is not acidic. Biochemistry : Formate is a common C-1 source in living systems. It is formed from many precursors including choline, serine, and sarcosine. It provides a C-1 source in the biosynthesis of some nucleic acids. Formate (or formic acid) is ina leaving group in the demethylation of some sterols.. These conversions are catalyzed by aromatase enzymes using O2 as the oxidant. Specific conversions include testosterone to estradiol and androstenedione to estrone ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Methanococcus Maripaludis
''Methanococcus maripaludis'' is a species of methanogen. It is anaerobic, weakly motile, non-spore-forming, Gram-negative Gram-negative bacteria are bacteria that do not retain the crystal violet stain used in the Gram staining method of bacterial differentiation. They are characterized by their cell envelopes, which are composed of a thin peptidoglycan cell wall ..., and a pleomorphic coccoid-rod averaging 1.2 by 1.6 μm is size. Its genome has been sequenced. References Further reading * * * External linksLPSN*Type strain of ''Methanococcus maripaludis'' at Bac''Dive'' - the Bacterial Diversity Metadatabase Euryarchaeota Archaea described in 1984 {{Euryarchaeota-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, and highly combustible. Hydrogen is the most abundant chemical substance in the universe, constituting roughly 75% of all normal matter.However, most of the universe's mass is not in the form of baryons or chemical elements. See dark matter and dark energy. Stars such as the Sun are mainly composed of hydrogen in the plasma state. Most of the hydrogen on Earth exists in molecular forms such as water and organic compounds. For the most common isotope of hydrogen (symbol 1H) each atom has one proton, one electron, and no neutrons. In the early universe, the formation of protons, the nuclei of hydrogen, occurred during the first second after the Big Bang. The emergence of neutral hydrogen atoms throughout the universe occurred about 370,000 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]