Metaheuristics Classification
   HOME





Metaheuristics Classification
In computer science and mathematical optimization, a metaheuristic is a higher-level procedure (computer science), procedure or Heuristic (computer science), heuristic designed to find, generate, tune, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem or a machine learning problem, especially with incomplete or imperfect information or limited computation capacity. Metaheuristics sample a subset of solutions which is otherwise too large to be completely enumerated or otherwise explored. Metaheuristics may make relatively few assumptions about the optimization problem being solved and so may be usable for a variety of problems. Their use is always of interest when exact or other (approximate) methods are not available or are not expedient, either because the calculation time is too long or because, for example, the solution provided is too imprecise. Compared to optimization algorithms and iterative methods, met ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, applied disciplines (including the design and implementation of Computer architecture, hardware and Software engineering, software). Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and preventing security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Search (optimization)
In computer science, local search is a heuristic method for solving computationally hard Mathematical optimization, optimization problems. Local search can be used on problems that can be formulated as finding a solution that maximizes a criterion among a number of candidate solutions. Local Search algorithm, search algorithms move from solution to solution in the space of candidate solutions (the ''search space'') by applying local changes, until a solution deemed optimal is found or a time bound is elapsed. Local search algorithms are widely applied to numerous hard computational problems, including problems from computer science (particularly artificial intelligence), mathematics, operations research, engineering, and bioinformatics. Examples of local search algorithms are WalkSAT, the 2-opt, 2-opt algorithm for the Traveling Salesman Problem and the Metropolis–Hastings algorithm. While it is sometimes possible to substitute gradient descent for a local search algorithm, gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Particle Swarm Optimization
In computational science, particle swarm optimization (PSO) is a computational method that Mathematical optimization, optimizes a problem by iterative method, iteratively trying to improve a candidate solution with regard to a given measure of quality. It solves a problem by having a population of candidate solutions, here dubbed Point particle, particles, and moving these particles around in the Optimization (mathematics)#Concepts and notation, search-space according to simple formula, mathematical formulae over the particle's Position (vector), position and velocity. Each particle's movement is influenced by its local best known position, but is also guided toward the best known positions in the search-space, which are updated as better positions are found by other particles. This is expected to move the swarm toward the best solutions. PSO is originally attributed to James Kennedy (social psychologist), Kennedy, Russell C. Eberhart, Eberhart and Yuhui Shi, Shi and was first int ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Evolution Strategy
Evolution strategy (ES) from computer science is a subclass of evolutionary algorithms, which serves as an optimization (mathematics), optimization technique. It uses the major genetic operators mutation (evolutionary algorithm), mutation, recombination (evolutionary algorithm), recombination and selection (evolutionary algorithm), selection of parents. History The 'evolution strategy' optimization technique was created in the early 1960s and developed further in the 1970s and later by Ingo Rechenberg, Hans-Paul Schwefel and their co-workers. Methods Evolution strategies use natural problem-dependent representations, so Genetic representation, problem space and Genetic representation, search space are identical. In common with evolutionary algorithms, the operators are applied in a loop. An iteration of the loop is called a generation. The sequence of generations is continued until a termination criterion is met. The special feature of the ES is the self-adaptation of mutation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Genetic Algorithm
In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems via biologically inspired operators such as selection, crossover, and mutation. Some examples of GA applications include optimizing decision trees for better performance, solving sudoku puzzles, hyperparameter optimization, and causal inference. Methodology Optimization problems In a genetic algorithm, a population of candidate solutions (called individuals, creatures, organisms, or phenotypes) to an optimization problem is evolved toward better solutions. Each candidate solution has a set of properties (its chromosomes or genotype) which can be mutated and altered; traditionally, solutions are represented in binary as strings of 0s and 1s, but other encod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Evolutionary Computation
Evolutionary computation from computer science is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character. In evolutionary computation, an initial set of candidate solutions is generated and iteratively updated. Each new generation is produced by stochastically removing less desired solutions, and introducing small random changes as well as, depending on the method, mixing parental information. In biological terminology, a population of solutions is subjected to natural selection (or artificial selection), mutation and possibly recombination. As a result, the population will gradually evolve to increase in fitness, in this case the chosen fitness function of the algorithm. Evolutionary computation techni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ant Colony Optimization
In computer science and operations research, the ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational problems that can be reduced to finding good paths through graphs. Artificial ants represent multi-agent methods inspired by the behavior of real ants. The pheromone-based communication of biological ants is often the predominant paradigm used. Combinations of artificial ants and local search algorithms have become a preferred method for numerous optimization tasks involving some sort of graph, e.g., vehicle routing and internet routing. As an example, ant colony optimization is a class of optimization algorithms modeled on the actions of an ant colony. Artificial 'ants' (e.g. simulation agents) locate optimal solutions by moving through a parameter space representing all possible solutions. Real ants lay down pheromones to direct each other to resources while exploring their environment. The simulated 'ants' similarly record their ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Population Model (evolutionary Algorithm)
The population model of an evolutionary algorithm (EA) describes the structural properties of its population to which its members are subject. A population is the set of all proposed solutions of an EA considered in one iteration, which are also called ''individuals'' according to the biological role model. The individuals of a population can generate further individuals as offspring with the help of the genetic operators of the procedure. The simplest and widely used population model in EAs is the ''global'' or ''Panmixia, panmictic model'', which corresponds to an unstructured population. It allows each individual to choose any other individual of the population as a partner for the production of offspring by Crossover (genetic algorithm), crossover, whereby the details of the Selection (genetic algorithm), selection are irrelevant as long as the Fitness function, fitness of the individuals plays a significant role. Due to global mate selection, the genetic information of even sl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Greedy Randomized Adaptive Search Procedure
The greedy randomized adaptive search procedure (also known as GRASP) is a metaheuristic algorithm commonly applied to combinatorial optimization problems. GRASP typically consists of iterations made up from successive constructions of a greedy randomized solution and subsequent iterative improvements of it through a local search. The greedy randomized solutions are generated by adding elements to the problem's solution set from a list of elements ranked by a ''greedy function'' according to the quality of the solution they will achieve. To obtain variability in the candidate set of greedy solutions, well-ranked candidate elements are often placed in a ''restricted candidate list'' (RCL), and chosen at random when building up the solution. This kind of greedy randomized construction method is also known as a semi-greedy heuristic, first described in Hart and Shogan (1987). GRASP was first introduced in Feo and Resende (1989). Survey papers on GRASP include Feo and Resende (1995) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Variable Neighborhood Search
Variable neighborhood search (VNS), proposed by Mladenović & Hansen in 1997, is a metaheuristic method for solving a set of combinatorial optimization and global optimization problems. It explores distant neighborhoods of the current incumbent solution, and moves from there to a new one if and only if an improvement was made. The local search method is applied repeatedly to get from solutions in the neighborhood to local optima. VNS was designed for approximating solutions of discrete and continuous optimization problems and according to these, it is aimed for solving linear program problems, integer program problems, mixed integer program problems, nonlinear program problems, etc. Introduction VNS systematically changes the neighborhood in two phases: firstly, descent to find a local optimum and finally, a perturbation phase to get out of the corresponding valley. Applications are rapidly increasing in number and pertain to many fields: location theory, cluster analysis, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Iterated Local Search
Iterated Local Search (ILS) is a term in applied mathematics and computer science defining a modification of local search or hill climbing methods for solving discrete optimization problems. Local search methods can get stuck in a local minimum, where no improving neighbors are available. A simple modification consists of ''iterating'' calls to the local search routine, each time starting from a different initial configuration. This is called ''repeated local search'', and implies that the knowledge obtained during the previous local search phases is not used. Learning implies that the previous history, for example the memory about the previously found local minima, is mined to produce better and better starting points for local search. The implicit assumption is that of a ''clustered distribution of local minima'': when minimizing a function, determining good local minima is easier when starting from a local minimum with a low value than when starting from a random point. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tabu Search
Tabu search (TS) is a metaheuristic search method employing local search methods used for mathematical optimization. It was created by Fred W. Glover in 1986 and formalized in 1989. Local (neighborhood) searches take a potential solution to a problem and check its immediate neighbors (that is, solutions that are similar except for very few minor details) in the hope of finding an improved solution. Local search methods have a tendency to become stuck in suboptimal regions or on plateaus where many solutions are equally fit. Tabu search enhances the performance of local search by relaxing its basic rule. First, at each step ''worsening'' moves can be accepted if no improving move is available (like when the search is stuck at a strict local minimum). In addition, ''prohibitions'' (hence the term ''tabu'') are introduced to discourage the search from coming back to previously-visited solutions. The implementation of tabu search uses memory structures that describe the visited ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]