Maximum Coverage Problem
   HOME
*





Maximum Coverage Problem
The maximum coverage problem is a classical question in computer science, computational complexity theory, and operations research. It is a problem that is widely taught in approximation algorithms. As input you are given several sets and a number k. The sets may have some elements in common. You must select at most k of these sets such that the maximum number of elements are covered, i.e. the union of the selected sets has maximal size. Formally, (unweighted) Maximum Coverage : Instance: A number k and a collection of sets S = \ . : Objective: Find a subset S' \subseteq S of sets, such that \left, S' \ \leq k and the number of covered elements \left, \bigcup_ \ is maximized. The maximum coverage problem is NP-hard, and can be approximated within 1 - \frac + o(1) \approx 0.632 under standard assumptions. This result essentially matches the approximation ratio achieved by the generic greedy algorithm used for maximization of submodular functions with a cardinality co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computational Complexity Theory
In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying their computational complexity, i.e., the amount of resources needed to solve them, such as time and storage. Other measures of complexity are also used, such as the amount of communication (used in communication complexity), the number of gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). One of the roles of computationa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Operations Research
Operations research ( en-GB, operational research) (U.S. Air Force Specialty Code: Operations Analysis), often shortened to the initialism OR, is a discipline that deals with the development and application of analytical methods to improve decision-making. It is considered to be a subfield of mathematical sciences. The term management science is occasionally used as a synonym. Employing techniques from other mathematical sciences, such as modeling, statistics, and optimization, operations research arrives at optimal or near-optimal solutions to decision-making problems. Because of its emphasis on practical applications, operations research has overlap with many other disciplines, notably industrial engineering. Operations research is often concerned with determining the extreme values of some real-world objective: the maximum (of profit, performance, or yield) or minimum (of loss, risk, or cost). Originating in military efforts before World War II, its techniques have grown to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Approximation Algorithms
In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time. The field of approximation algorithms, therefore, tries to understand how closely it is possible to approximate optimal solutions to such problems in polynomial time. In an overwhelming majority of the cases, the guarantee of such algorithms is a multiplicative one expressed as an approximation ratio or approximation factor i.e., the optimal solution is always guaranteed to be within a (predetermined) multiplicative factor of the returned solution. However, there are a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

NP-hard
In computational complexity theory, NP-hardness ( non-deterministic polynomial-time hardness) is the defining property of a class of problems that are informally "at least as hard as the hardest problems in NP". A simple example of an NP-hard problem is the subset sum problem. A more precise specification is: a problem ''H'' is NP-hard when every problem ''L'' in NP can be reduced in polynomial time to ''H''; that is, assuming a solution for ''H'' takes 1 unit time, ''H''s solution can be used to solve ''L'' in polynomial time. As a consequence, finding a polynomial time algorithm to solve any NP-hard problem would give polynomial time algorithms for all the problems in NP. As it is suspected that P≠NP, it is unlikely that such an algorithm exists. It is suspected that there are no polynomial-time algorithms for NP-hard problems, but that has not been proven. Moreover, the class P, in which all problems can be solved in polynomial time, is contained in the NP class. Defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Submodular Set Function
In mathematics, a submodular set function (also known as a submodular function) is a set function whose value, informally, has the property that the difference in the incremental value of the function that a single element makes when added to an input set decreases as the size of the input set increases. Submodular functions have a natural diminishing returns property which makes them suitable for many applications, including approximation algorithms, game theory (as functions modeling user preferences) and electrical networks. Recently, submodular functions have also found immense utility in several real world problems in machine learning and artificial intelligence, including automatic summarization, multi-document summarization, feature selection, active learning, sensor placement, image collection summarization and many other domains. Definition If \Omega is a finite set, a submodular function is a set function f:2^\rightarrow \mathbb, where 2^\Omega denotes the power set of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


George Nemhauser
George Lann Nemhauser (born 1937). is an American operations researcher, the A. Russell Chandler III Chair and Institute Professor of Industrial and Systems Engineering at the Georgia Institute of Technology and the former president of the Institute for Operations Research and the Management Sciences, Operations Research Society of America.ORSA Presidential Portrait Gallery: George L. Nemhauser
retrieved 2012-02.25.


Biography

Nemhauser was born in The Bronx, New York, and did his undergraduate education at the City College of New York, graduating with a degree in chemical engineering in 1958. He earned his Ph.D. in operations research in 1961 from Northwestern University, un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer Linear Program
An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers. In many settings the term refers to integer linear programming (ILP), in which the objective function and the constraints (other than the integer constraints) are linear. Integer programming is NP-complete. In particular, the special case of 0-1 integer linear programming, in which unknowns are binary, and only the restrictions must be satisfied, is one of Karp's 21 NP-complete problems. If some decision variables are not discrete, the problem is known as a mixed-integer programming problem. Canonical and standard form for ILPs In integer linear programming, the ''canonical form'' is distinct from the ''standard form''. An integer linear program in canonical form is expressed thus (note that it is the \mathbf vector which is to be decided): : \begin & \text && \mathbf^\mathrm \mathbf\\ & \text && A \mathbf \le \mathbf, \\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Greedy Algorithm
A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage. In many problems, a greedy strategy does not produce an optimal solution, but a greedy heuristic can yield locally optimal solutions that approximate a globally optimal solution in a reasonable amount of time. For example, a greedy strategy for the travelling salesman problem (which is of high computational complexity) is the following heuristic: "At each step of the journey, visit the nearest unvisited city." This heuristic does not intend to find the best solution, but it terminates in a reasonable number of steps; finding an optimal solution to such a complex problem typically requires unreasonably many steps. In mathematical optimization, greedy algorithms optimally solve combinatorial problems having the properties of matroids and give constant-factor approximations to optimization problems with the submodular structure. Specifics Greedy algorith ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Junade Ali
Junade Ali is a British computer scientist known for research in cybersecurity.CEng registration number ''673221''. https://www.engc.org.uk/regcheck Ali studied for a Master of Science degree aged 17 and was awarded Chartered Engineer status by 24. He started his research career working on the UK's Motorway Incident Detection and Automatic Signalling network and working on the maximum coverage problem in road traffic sensor placement. Ali later worked for cybersecurity firm Cloudflare as an engineering manager where he worked on developing network diagnostic tooling, a security operations center and safety-engineered natural language processing. In February 2018, Ali created the first Compromised Credential Checking protocol (using ''k''-anonymity and cryptographic hashing) to anonymously verify whether a password was in a data breach without fully disclosing the searched password. This protocol was implemented as a public API and is now consumed by multiple websites and s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Set Cover Problem
The set cover problem is a classical question in combinatorics, computer science, operations research, and complexity theory. It is one of Karp's 21 NP-complete problems shown to be NP-complete in 1972. Given a set of elements (called the universe) and a collection of sets whose union equals the universe, the set cover problem is to identify the smallest sub-collection of whose union equals the universe. For example, consider the universe and the collection of sets Clearly the union of is . However, we can cover all of the elements with the following, smaller number of sets: More formally, given a universe \mathcal and a family \mathcal of subsets of \mathcal, a ''cover'' is a subfamily \mathcal\subseteq\mathcal of sets whose union is \mathcal. In the set covering decision problem, the input is a pair (\mathcal,\mathcal) and an integer k; the question is whether there is a set covering of size k or less. In the set covering optimization problem, the input is a pair (\ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Families Of Sets
Family (from la, familia) is a group of people related either by consanguinity (by recognized birth) or affinity (by marriage or other relationship). The purpose of the family is to maintain the well-being of its members and of society. Ideally, families offer predictability, structure, and safety as members mature and learn to participate in the community. Historically, most human societies use family as the primary locus of attachment, nurturance, and socialization. Anthropologists classify most family organizations as matrifocal (a mother and her children), patrifocal (a father and his children), conjugal (a wife, her husband, and children, also called the nuclear family), avuncular (a man, his sister, and her children), or extended (in addition to parents and children, may include grandparents, aunts, uncles, or cousins). The field of genealogy aims to trace family lineages through history. The family is also an important economic unit studied in family economics. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]