Mason–Stothers Theorem
   HOME
*





Mason–Stothers Theorem
The Mason–Stothers theorem, or simply Mason's theorem, is a mathematical theorem about polynomials In mathematics, a polynomial is an expression (mathematics), expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addition, subtrac ..., analogous to the ''abc'' conjecture for integers. It is named after Walter Wilson Stothers, who published it in 1981, and R. C. Mason, who rediscovered it shortly thereafter. The theorem states: :Let , , and be relatively prime polynomials over a field such that and such that not all of them have vanishing derivative. Then ::\max\ \le \deg(\operatorname(abc))-1. Here is the product of the distinct irreducible factors of . For algebraically closed fields it is the polynomial of minimum degree that has the same roots as ; in this case gives the number of distinct roots of . Examples *Over fields of characteristic 0 the cond ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorem
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomials
In mathematics, a polynomial is an expression (mathematics), expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problem (mathematics education), word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic variety ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abc Conjecture
The ''abc'' conjecture (also known as the Oesterlé–Masser conjecture) is a conjecture in number theory that arose out of a discussion of Joseph Oesterlé and David Masser in 1985. It is stated in terms of three positive integers ''a'', ''b'' and ''c'' (hence the name) that are relatively prime and satisfy ''a'' + ''b'' = ''c''. The conjecture essentially states that the product of the distinct prime factors of ''abc'' is usually not much smaller than ''c''. A number of famous conjectures and theorems in number theory would follow immediately from the ''abc'' conjecture or its versions. Mathematician Dorian Goldfeld described the ''abc'' conjecture as "The most important unsolved problem in Diophantine analysis". The ''abc'' conjecture originated as the outcome of attempts by Oesterlé and Masser to understand the Szpiro conjecture about elliptic curves, which involves more geometric structures in its statement than the ''abc'' conjecture. The ''abc'' conjecture was sho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Walter Wilson Stothers
Walter Wilson Stothers (8 November 1946 – 16 July 2009) was a British mathematician who proved the Stothers-Mason Theorem ( Mason-Stothers theorem) in the early 1980s. He was the third and youngest son of a family doctor in Glasgow and a mother, who herself had graduated in mathematics in 1927. He attended Allan Glen's School, a secondary school in Glasgow that specialised in science education, and where he was Dux of the School in 1964. From 1964 to 1968 he was a student in the Science Faculty of the University of Glasgow graduating with a First Class Honours degree. In September 1968 he married Andrea Watson before beginning further studies at Peterhouse, Cambridge Peterhouse is the oldest constituent college of the University of Cambridge in England, founded in 1284 by Hugh de Balsham, Bishop of Ely. Today, Peterhouse has 254 undergraduates, 116 full-time graduate students and 54 fellows. It is quite ... from which he had received a "Jack Scholarship". Under the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Relatively Prime Polynomials
In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because the polynomial equation ''x''2 + 1 = 0  has no solution in real numbers, even though all its coefficients (1 and 0) are real. The same argument proves that no subfield of the real field is algebraically closed; in particular, the field of rational numbers is not algebraically closed. Also, no finite field ''F'' is algebraically closed, because if ''a''1, ''a''2, ..., ''an'' are the elements of ''F'', then the polynomial (''x'' − ''a''1)(''x'' − ''a''2) ⋯ (''x'' − ''a''''n'') + 1 has no zero in ''F''. By contrast, the fundamental theorem of algebra states that the field of complex numbers is algebraically closed. Another example of an algebraicall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Root Of A Function
In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function f, is a member x of the domain of f such that f(x) ''vanishes'' at x; that is, the function f attains the value of 0 at x, or equivalently, x is the solution to the equation f(x) = 0. A "zero" of a function is thus an input value that produces an output of 0. A root of a polynomial is a zero of the corresponding polynomial function. The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. For example, the polynomial f of degree two, defined by f(x)=x^2-5x+6 has the two roots (or zeros) that are 2 and 3. f(2)=2^2-5\times 2+6= 0\textf(3)=3^2-5\times 3+6=0. If the function maps real numbers to real numbers, then it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermat's Last Theorem
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers , , and satisfy the equation for any integer value of greater than 2. The cases and have been known since antiquity to have infinitely many solutions.Singh, pp. 18–20. The proposition was first stated as a theorem by Pierre de Fermat around 1637 in the margin of a copy of '' Arithmetica''. Fermat added that he had a proof that was too large to fit in the margin. Although other statements claimed by Fermat without proof were subsequently proven by others and credited as theorems of Fermat (for example, Fermat's theorem on sums of two squares), Fermat's Last Theorem resisted proof, leading to doubt that Fermat ever had a correct proof. Consequently the proposition became known as a conjecture rather than a theorem. After 358 years of effort by mathematicians, the first successful proof was released in 1994 by Andrew Wiles and form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Wronskian
In mathematics, the Wronskian (or Wrońskian) is a determinant introduced by and named by . It is used in the study of differential equations, where it can sometimes show linear independence in a set of solutions. Definition The Wronskian of two differentiable functions and is . More generally, for real- or complex-valued functions , which are times differentiable on an interval , the Wronskian as a function on is defined by W(f_1, \ldots, f_n) (x)= \begin f_1(x) & f_2(x) & \cdots & f_n(x) \\ f_1'(x) & f_2'(x) & \cdots & f_n' (x)\\ \vdots & \vdots & \ddots & \vdots \\ f_1^(x)& f_2^(x) & \cdots & f_n^(x) \end,\quad x\in I. That is, it is the determinant of the matrix constructed by placing the functions in the first row, the first derivative of each function in the second row, and so on through the th derivative, thus forming a square matrix. When the functions are solutions of a linear differential equation, the Wronskian can be found explicitly using Abel's ident ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Function Field
In mathematics, an algebraic function field (often abbreviated as function field) of ''n'' variables over a field ''k'' is a finitely generated field extension ''K''/''k'' which has transcendence degree ''n'' over ''k''. Equivalently, an algebraic function field of ''n'' variables over ''k'' may be defined as a finite field extension of the field ''K'' = ''k''(''x''1,...,''x''''n'') of rational functions in ''n'' variables over ''k''. Example As an example, in the polynomial ring ''k'' 'X'',''Y''consider the ideal generated by the irreducible polynomial ''Y''2 − ''X''3 and form the field of fractions of the quotient ring ''k'' 'X'',''Y''(''Y''2 − ''X''3). This is a function field of one variable over ''k''; it can also be written as k(X)(\sqrt) (with degree 2 over k(X)) or as k(Y)(\sqrt (with degree 3 over k(Y)). We see that the degree of an algebraic function field is not a well-defined notion. Category structure The algebraic function fields over ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Variety
In algebraic geometry, a projective variety over an algebraically closed field ''k'' is a subset of some projective ''n''-space \mathbb^n over ''k'' that is the zero-locus of some finite family of homogeneous polynomials of ''n'' + 1 variables with coefficients in ''k'', that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of \mathbb^n. A projective variety is a projective curve if its dimension is one; it is a projective surface if its dimension is two; it is a projective hypersurface if its dimension is one less than the dimension of the containing projective space; in this case it is the set of zeros of a single homogeneous polynomial. If ''X'' is a projective variety defined by a homogeneous prime ideal ''I'', then the quotient ring :k _0, \ldots, x_nI is called the homogeneous coordinate ring of ''X''. Basic invariants of ''X'' such as the degree and the dim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geometric Genus
In algebraic geometry, the geometric genus is a basic birational invariant of algebraic varieties and complex manifolds. Definition The geometric genus can be defined for non-singular complex projective varieties and more generally for complex manifolds as the Hodge number (equal to by Serre duality), that is, the dimension of the canonical linear system plus one. In other words for a variety of complex dimension it is the number of linearly independent holomorphic -forms to be found on .Danilov & Shokurov (1998), p. 53/ref> This definition, as the dimension of : then carries over to any base field, when is taken to be the sheaf of Kähler differentials and the power is the (top) exterior power, the canonical line bundle. The geometric genus is the first invariant of a sequence of invariants called the plurigenera. Case of curves In the case of complex varieties, (the complex loci of) non-singular curves are Riemann surfaces. The algebraic definition of genus agre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joseph H
Joseph is a common male given name, derived from the Hebrew Yosef (יוֹסֵף). "Joseph" is used, along with "Josef", mostly in English, French and partially German languages. This spelling is also found as a variant in the languages of the modern-day Nordic countries. In Portuguese and Spanish, the name is "José". In Arabic, including in the Quran, the name is spelled '' Yūsuf''. In Persian, the name is "Yousef". The name has enjoyed significant popularity in its many forms in numerous countries, and ''Joseph'' was one of the two names, along with ''Robert'', to have remained in the top 10 boys' names list in the US from 1925 to 1972. It is especially common in contemporary Israel, as either "Yossi" or "Yossef", and in Italy, where the name "Giuseppe" was the most common male name in the 20th century. In the first century CE, Joseph was the second most popular male name for Palestine Jews. In the Book of Genesis Joseph is Jacob's eleventh son and Rachel's first son, and k ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]