HOME
*



picture info

Marx Generator
A Marx generator is an electrical circuit first described by Erwin Otto Marx in 1924. Its purpose is to generate a high-voltage pulse from a low-voltage DC supply. Marx generators are used in high-energy physics experiments, as well as to simulate the effects of lightning on power-line gear and aviation equipment. A bank of 36 Marx generators is used by Sandia National Laboratories to generate X-rays in their Z Machine. Principle of operation The circuit generates a high-voltage pulse by charging a number of capacitors in parallel, then suddenly connecting them in series. See the circuit above. At first, ''n'' capacitors (''C'') are charged in parallel to a voltage ''VC'' by a DC power supply through the resistors (''R''C). The spark gaps used as switches have the voltage ''VC'' across them, but the gaps have a breakdown voltage greater than ''VC'', so they all behave as open circuits while the capacitors charge. The last gap isolates the output of the generator from the load; w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Radioactive
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha decay ( ), beta decay ( ), and gamma decay ( ), all of which involve emitting one or more particles. The weak force is the mechanism that is responsible for beta decay, while the other two are governed by the electromagnetism and nuclear force. A fourth type of common decay is electron capture, in which an unstable nucleus captures an inner electron from one of the electron shells. The loss of that electron from the shell results in a cascade of electrons dropping down to that lower shell resulting in emission of discrete X-rays from the transitions. A common example is iodine-125 commonly used in medical settings. Radioactive decay is a stochastic (i.e. random) pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

TEA Laser
A TEA laser is a gas laser energized by a high voltage electrical discharge in a gas mixture generally at or above atmospheric pressure. The most common types are carbon dioxide lasers and excimer lasers, both used extensively in industry and research; less common are nitrogen lasers. The acronym "TEA" stands for Transversely Excited Atmospheric. History Invention The carbon dioxide (CO2) TEA laser was invented in the late 1960s by Jacques Beaulieu working at the Defence Research and Development Canada at Valcartier in Quebec, Canada. The development was kept secret until 1970, when brief details were published. In 1963, C. Kumar N. Patel, working at Bell Telephone Laboratories, first demonstrated laser output at 10.6 µm from a low pressure RF-excited CO2 gas discharge. With the addition of nitrogen and helium and using a DC electrical discharge, CW powers of around 100 W were achieved. By pulsing the discharge using higher voltages, or Q-switching using a ro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pockels Cell
The Pockels effect or Pockels electro-optic effect, named after Friedrich Carl Alwin Pockels (who studied the effect in 1893), changes or produces birefringence in an optical medium induced by an electric field. In the Pockels effect, also known as the linear electro-optic effect, the birefringence is proportional to the electric field. In the Kerr effect, the refractive index change (birefringence) is proportional to the square of the field. The Pockels effect occurs only in crystals that lack inversion symmetry, such as KH2PO4 (KDP), KD2PO4 (KD*P or DKDP), lithium niobate (LiNbO3), and in other non-centrosymmetric media such as electric-field poled polymers or glasses. The electro-optic properties of materials like KDP and its isomorphs that exhibits that Pockels effect has been extensively studied over the years to allow accurate models for simulations. Pockels cells Pockels cells are voltage-controlled wave plates. The Pockels effect is the basis of the operation of Pock ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Liquid Resistor
A liquid resistor is an electrical resistor in which the resistive element is a solution. Fixed-value liquid resistors are typically used where very high power dissipation is required. They are used in the rotor circuits of large slip ring induction motors to control starting current, torque and to limit large electrical fault currents (while other protection systems operate to clear or isolate the fault). They typically have electrodes made of welded steel plate (galvanised to reduce corrosion), suspended by insulated connections in a conductive chemical solution held in a tank - which may be open or enclosed. The tank body is normally solidly grounded or earthed. A typical unit can be rated for continuous use, or for short periods when used for current limitation in protection systems. Liquid neutral earthing resistor A common use in the electrical power generating and distribution industry is as a fault current limiter in the common neutral leg of large three-phase transfo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Copper Sulfate
Copper sulfate may refer to: * Copper(II) sulfate, CuSO4, a common compound used as a fungicide and herbicide * Copper(I) sulfate Copper(I) sulfate, also known as cuprous sulfate, is an inorganic compound with the chemical formula Cu2 SO4. It is a white solid that has attracted little attention, in contrast to copper(II) sulfate. It is an unusual example of a copper(I) ..., Cu2SO4, which is uncommonly used * Copper(II) sulfate, CuSO4 is greenish blue Copper compounds {{Chem-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inductor
An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a coil. When the current flowing through the coil changes, the time-varying magnetic field induces an electromotive force (''emf'') (voltage) in the conductor, described by Faraday's law of induction. According to Lenz's law, the induced voltage has a polarity (direction) which opposes the change in current that created it. As a result, inductors oppose any changes in current through them. An inductor is characterized by its inductance, which is the ratio of the voltage to the rate of change of current. In the International System of Units (SI), the unit of inductance is the henry (H) named for 19th century American scientist Joseph Henry. In the measurement of magnetic circuits, it is equivalent to . Inductors have values that typically ra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Laser
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The first laser was built in 1960 by Theodore H. Maiman at Hughes Research Laboratories, based on theoretical work by Charles Hard Townes and Arthur Leonard Schawlow. A laser differs from other sources of light in that it emits light which is ''coherent''. Spatial coherence allows a laser to be focused to a tight spot, enabling applications such as laser cutting and lithography. Spatial coherence also allows a laser beam to stay narrow over great distances (collimation), enabling applications such as laser pointers and lidar (light detection and ranging). Lasers can also have high temporal coherence, which allows them to emit light with a very narrow spectrum. Alternatively, temporal coherence can be used to produce ultrashort pulses ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Trigatron
A trigatron is a type of triggerable spark gap switch designed for high current and high voltage (usually 10–100 kV and 20–100 kA, though devices in the mega-ampere range exist as well). It has very simple construction and in many cases is the lowest cost high energy switching option. It may operate in open air, it may be sealed, or it may be filled with a dielectric gas other than air or a liquid dielectric. The dielectric gas may be pressurized, or a liquid dielectric (e.g. mineral oil) may be substituted to further extend the operating voltage. Trigatrons may be rated for repeated use (over 10,000 switching cycles), or they may be single-shot, destroyed in a single use. A trigatron has three electrodes. The heavy main electrodes are for the high current switching path, and a smaller third electrode serves as the trigger. During normal operation, the voltage between the main electrodes is somewhat lower than the breakdown voltage corresponding to their distance and the dielec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dielectric Gas
A dielectric gas, or insulating gas, is a dielectric material in gaseous state. Its main purpose is to prevent or rapidly quench electric discharges. Dielectric gases are used as electrical insulators in high voltage applications, e.g. transformers, circuit breakers (namely sulfur hexafluoride circuit breakers), switchgear (namely high voltage switchgear), radar waveguides, etc. A good dielectric gas should have high dielectric strength, high thermal stability and chemical inertness against the construction materials used, non-flammability and low toxicity, low boiling point, good heat transfer properties, and low cost. The most common dielectric gas is air, due to its ubiquity and low cost. Another commonly used gas is a dry nitrogen. In special cases, e.g., high voltage switches, gases with good dielectric properties and very high breakdown voltages are needed. Highly electronegative elements, e.g., halogens, are favored as they rapidly recombine with the ions prese ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Transformer Oil
Transformer oil or insulating oil is an oil that is stable at high temperatures and has excellent electrical insulating properties. It is used in oil-filled transformers (wet transformers), some types of high-voltage capacitors, fluorescent lamp ballasts, and some types of high-voltage switches and circuit breakers. Its functions are to insulate, suppress corona discharge and arcing, and to serve as a coolant. Transformer oil is most often based on mineral oil, but alternative formulations with different engineering or environmental properties are growing in popularity. Function and properties Transformer oil's primary functions are to insulate and cool a transformer. It must therefore have high dielectric strength, thermal conductivity, and chemical stability, and must keep these properties when held at high temperatures for extended periods. Typical specifications are: flash point 140 °C or greater, pour point −40 °C or lower, dielectric breakdown voltage ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ultraviolet
Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight, and constitutes about 10% of the total electromagnetic radiation output from the Sun. It is also produced by electric arcs and specialized lights, such as mercury-vapor lamps, tanning lamps, and black lights. Although long-wavelength ultraviolet is not considered an ionizing radiation because its photons lack the energy to ionize atoms, it can cause chemical reactions and causes many substances to glow or fluoresce. Consequently, the chemical and biological effects of UV are greater than simple heating effects, and many practical applications of UV radiation derive from its interactions with organic molecules. Short-wave ultraviolet light damages DNA and sterilizes surfaces with which it comes into contact. F ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]