Markov Chains On A Measurable State Space
   HOME
*





Markov Chains On A Measurable State Space
A Markov chain on a measurable state space is a discrete-time-homogeneous Markov chain with a measurable space as state space. History The definition of Markov chains has evolved during the 20th century. In 1953 the term Markov chain was used for stochastic processes with discrete or continuous index set, living on a countable or finite state space, see Doob. or Chung. Since the late 20th century it became more popular to consider a Markov chain as a stochastic process with discrete index set, living on a measurable state space.Daniel Revuz: ''Markov Chains''. 2nd edition, 1984.Rick Durrett: ''Probability: Theory and Examples''. Fourth edition, 2005. Definition Denote with (E , \Sigma) a measurable space and with p a Markov kernel with source and target (E , \Sigma). A stochastic process (X_n)_ on (\Omega,\mathcal,\mathbb) is called a time homogeneous Markov chain with Markov kernel p and start distribution \mu if : \mathbb _0 \in A_0 , X_1 \in A_1, \dots , X_n \in A_n= \int_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Markov Chain
A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, this may be thought of as, "What happens next depends only on the state of affairs ''now''." A countably infinite sequence, in which the chain moves state at discrete time steps, gives a discrete-time Markov chain (DTMC). A continuous-time process is called a continuous-time Markov chain (CTMC). It is named after the Russian mathematician Andrey Markov. Markov chains have many applications as statistical models of real-world processes, such as studying cruise control systems in motor vehicles, queues or lines of customers arriving at an airport, currency exchange rates and animal population dynamics. Markov processes are the basis for general stochastic simulation methods known as Markov chain Monte Carlo, which are used for simulating sampling from complex probability dist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Measure (mathematics)
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures ( length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann Radon, Const ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stochastic Process
In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner. Examples include the growth of a bacterial population, an electrical current fluctuating due to thermal noise, or the movement of a gas molecule. Stochastic processes have applications in many disciplines such as biology, chemistry, ecology, neuroscience, physics, image processing, signal processing, control theory, information theory, computer science, cryptography and telecommunications. Furthermore, seemingly random changes in financial markets have motivated the extensive use of stochastic processes in finance. Applications and the study of phenomena have in turn inspired the proposal of new stochastic processes. Examples of such stochastic processes include the Wiener process or Brownian motion process, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Markov Kernel
In probability theory, a Markov kernel (also known as a stochastic kernel or probability kernel) is a map that in the general theory of Markov processes plays the role that the transition matrix does in the theory of Markov processes with a finite state space. Formal definition Let (X,\mathcal A) and (Y,\mathcal B) be measurable spaces. A ''Markov kernel'' with source (X,\mathcal A) and target (Y,\mathcal B) is a map \kappa : \mathcal B \times X \to ,1/math> with the following properties: # For every (fixed) B \in \mathcal B, the map x \mapsto \kappa(B, x) is \mathcal A-measurable # For every (fixed) x \in X, the map B \mapsto \kappa(B, x) is a probability measure on (Y, \mathcal B) In other words it associates to each point x \in X a probability measure \kappa(dy, x): B \mapsto \kappa(B, x) on (Y,\mathcal B) such that, for every measurable set B\in\mathcal B, the map x\mapsto \kappa(B, x) is measurable with respect to the \sigma-algebra \mathcal A. Examples Simple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Measure (mathematics)
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures ( length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann Radon, Const ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lebesgue Integration
In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the -axis. The Lebesgue integral, named after French mathematician Henri Lebesgue, extends the integral to a larger class of functions. It also extends the domains on which these functions can be defined. Long before the 20th century, mathematicians already understood that for non-negative functions with a smooth enough graph—such as continuous functions on closed bounded intervals—the ''area under the curve'' could be defined as the integral, and computed using approximation techniques on the region by polygons. However, as the need to consider more irregular functions arose—e.g., as a result of the limiting processes of mathematical analysis and the mathematical theory of probability—it became clear that more careful approximation techniques were needed to define a suitable integral. Also, one might ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirac Measure
In mathematics, a Dirac measure assigns a size to a set based solely on whether it contains a fixed element ''x'' or not. It is one way of formalizing the idea of the Dirac delta function, an important tool in physics and other technical fields. Definition A Dirac measure is a measure on a set (with any -algebra of subsets of ) defined for a given and any (measurable) set by :\delta_x (A) = 1_A(x)= \begin 0, & x \not \in A; \\ 1, & x \in A. \end where is the indicator function of . The Dirac measure is a probability measure, and in terms of probability it represents the almost sure outcome in the sample space . We can also say that the measure is a single atom at ; however, treating the Dirac measure as an atomic measure is not correct when we consider the sequential definition of Dirac delta, as the limit of a delta sequence. The Dirac measures are the extreme points of the convex set of probability measures on . The name is a back-formation from the Dirac delta fun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harris Chain
In the mathematical study of stochastic processes, a Harris chain is a Markov chain where the chain returns to a particular part of the state space an unbounded number of times. Harris chains are regenerative processes and are named after Theodore Harris. The theory of Harris chains and Harris recurrence is useful for treating Markov chains on general (possibly uncountably infinite) state spaces. Definition Let \ be a Markov chain on a general state space \Omega with stochastic kernel K. The kernel represents a generalized one-step transition probability law, so that P(X_\in C\mid X_n=x)=K(x,C) for all states x in \Omega and all measurable sets C\subseteq \Omega. The chain \ is a ''Harris chain''R. Durrett. ''Probability: Theory and Examples''. Thomson, 2005. . if there exists A\subseteq\Omega,\varepsilon>0, and probability measure \rho with \rho(\Omega)=1 such that # If \tau_A:=\inf \, then P(\tau_A 0, and let ''A'' and Ω be open sets containing ''x''0 and ''y''0 respec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Subshift Of Finite Type
In mathematics, subshifts of finite type are used to model dynamical systems, and in particular are the objects of study in symbolic dynamics and ergodic theory. They also describe the set of all possible sequences executed by a finite state machine. The most widely studied shift spaces are the subshifts of finite type. Definition Let V be a finite set of n symbols (alphabet). Let ''X'' denote the set V^\mathbb of all bi-infinite sequences of elements of ''V'' together with the shift operator ''T''. We endow ''V'' with the discrete topology and ''X'' with the product topology. A symbolic flow or subshift is a closed ''T''-invariant subset ''Y'' of ''X'' Xie (1996) p.21 and the associated language ''L''''Y'' is the set of finite subsequences of ''Y''.Xie (1996) p.22 Now let A be an n\times n adjacency matrix with entries in . Using these elements we construct a directed graph ''G''=(''V'',''E'') with ''V'' the set of vertices and ''E'' the set of edges containing the directed ed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]