MAX-2SAT
   HOME
*



picture info

MAX-2SAT
In computer science, 2-satisfiability, 2-SAT or just 2SAT is a computational problem of assigning values to variables, each of which has two possible values, in order to satisfy a system of constraints on pairs of variables. It is a special case of the general Boolean satisfiability problem, which can involve constraints on more than two variables, and of constraint satisfaction problems, which can allow more than two choices for the value of each variable. But in contrast to those more general problems, which are NP-complete, 2-satisfiability can be solved in polynomial time. Instances of the 2-satisfiability problem are typically expressed as Boolean formulas of a special type, called conjunctive normal form (2-CNF) or Krom formulas. Alternatively, they may be expressed as a special type of directed graph, the implication graph, which expresses the variables of an instance and their negations as vertices in a graph, and constraints on pairs of variables as directed edges. Both ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




NL-complete
In computational complexity theory, NL-complete is a complexity class containing the languages that are complete for NL, the class of decision problems that can be solved by a nondeterministic Turing machine using a logarithmic amount of memory space. The NL-complete languages are the most "difficult" or "expressive" problems in NL. If a deterministic algorithm exists for solving any one of the NL-complete problems in logarithmic memory space, then NL = L. Definitions NL consists of the decision problems that can be solved by a nondeterministic Turing machine with a read-only input tape and a separate read-write tape whose size is limited to be proportional to the logarithm of the input length. Similarly, L consists of the languages that can be solved by a deterministic Turing machine with the same assumptions about tape length. Because there are only a polynomial number of distinct configurations of these machines, both L and NL are subsets of the class P of determin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

University Of California, Davis
The University of California, Davis (UC Davis, UCD, or Davis) is a public land-grant research university near Davis, California. Named a Public Ivy, it is the northernmost of the ten campuses of the University of California system. The institution was first founded as an agricultural branch of the system in 1905 and became the seventh campus of the University of California in 1959. The university is classified among "R1: Doctoral Universities – Very high research activity". The UC Davis faculty includes 23 members of the National Academy of Sciences, 30 members of the American Academy of Arts and Sciences, 17 members of the American Law Institute, 14 members of the Institute of Medicine, and 14 members of the National Academy of Engineering. Among other honors that university faculty, alumni, and researchers have won are two Nobel Prizes, one Fields Medal, a Presidential Medal of Freedom, three Pulitzer Prizes, three MacArthur Fellowships, and a National Medal of Scien ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Truth Assignment
An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called formal semantics. The most commonly studied formal logics are propositional logic, predicate logic and their modal analogs, and for these there are standard ways of presenting an interpretation. In these contexts an interpretation is a function that provides the extension of symbols and strings of symbols of an object language. For example, an interpretation function could take the predicate ''T'' (for "tall") and assign it the extension (for "Abraham Lincoln"). Note that all our interpretation does is assign the extension to the non-logical constant ''T'', and does not make a claim about whether ''T'' is to stand for tall and 'a' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Literal (mathematical Logic)
In mathematical logic, a literal is an atomic formula (also known as an atom or prime formula) or its negation. The definition mostly appears in proof theory (of classical logic), e.g. in conjunctive normal form and the method of resolution. Literals can be divided into two types: * A positive literal is just an atom (e.g., x). * A negative literal is the negation of an atom (e.g., \lnot x). The polarity of a literal is positive or negative depending on whether it is a positive or negative literal. In logics with double negation elimination (where \lnot \lnot x \equiv x) the complementary literal or complement of a literal l can be defined as the literal corresponding to the negation of l. We can write \bar to denote the complementary literal of l. More precisely, if l\equiv x then \bar is \lnot x and if l\equiv \lnot x then \bar is x. Double negation elimination occurs in classical logics but not in intuitionistic logic. In the context of a formula in the conjunctive normal form, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Disjunction
In logic, disjunction is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is raining or it is snowing" can be represented in logic using the disjunctive formula R \lor S , assuming that R abbreviates "it is raining" and S abbreviates "it is snowing". In classical logic, disjunction is given a truth functional semantics according to which a formula \phi \lor \psi is true unless both \phi and \psi are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an ''inclusive'' interpretation of disjunction, in contrast with exclusive disjunction. Classical proof theoretical treatments are often given in terms of rules such as disjunction introduction and disjunction elimination. Disjunction has also been given numerous non-classical treatments, motivated by problems including Aristotle's sea battle argument, Heisenberg's uncertainty principle, as well t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Clause (logic)
In logic, a clause is a propositional formula formed from a finite collection of literals (atoms or their negations) and logical connectives. A clause is true either whenever at least one of the literals that form it is true (a disjunctive clause, the most common use of the term), or when all of the literals that form it are true (a conjunctive clause, a less common use of the term). That is, it is a finite disjunction or conjunction of literals, depending on the context. Clauses are usually written as follows, where the symbols l_i are literals: :l_1 \vee \cdots \vee l_n Empty clauses A clause can be empty (defined from an empty set of literals). The empty clause is denoted by various symbols such as \empty, \bot, or \Box. The truth evaluation of an empty disjunctive clause is always false. This is justified by considering that false is the neutral element of the monoid (\, \vee). The truth evaluation of an empty conjunctive clause is always true. This is related to the concept ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Conjunction
In logic, mathematics and linguistics, And (\wedge) is the truth-functional operator of logical conjunction; the ''and'' of a set of operands is true if and only if ''all'' of its operands are true. The logical connective that represents this operator is typically written as \wedge or . A \land B is true if and only if A is true and B is true, otherwise it is false. An operand of a conjunction is a conjunct. Beyond logic, the term "conjunction" also refers to similar concepts in other fields: * In natural language, the denotation of expressions such as English "and". * In programming languages, the short-circuit and control structure. * In set theory, intersection. * In lattice theory, logical conjunction ( greatest lower bound). * In predicate logic, universal quantification. Notation And is usually denoted by an infix operator: in mathematics and logic, it is denoted by \wedge, or ; in electronics, ; and in programming languages, &, &&, or and. In Jan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Boolean Expression
In computer science, a Boolean expression is an expression used in programming languages that produces a Boolean value when evaluated. A Boolean value is either true or false. A Boolean expression may be composed of a combination of the Boolean constants true or false, Boolean-typed variables, Boolean-valued operators, and Boolean-valued functions. Boolean expressions correspond to propositional formulas in logic and are a special case of Boolean circuits. Boolean operators Most programming language A programming language is a system of notation for writing computer programs. Most programming languages are text-based formal languages, but they may also be graphical. They are a kind of computer language. The description of a programming ...s have the Boolean operators Logical disjunction, OR, Logical conjunction, AND and Negation, NOT; in C (programming language), C and some List of C-family programming languages, languages inspired by it, these are represented by ", , " ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Implication Graph
In mathematical logic and graph theory, an implication graph is a skew-symmetric, directed graph composed of vertex set and directed edge set . Each vertex in represents the truth status of a Boolean literal, and each directed edge from vertex to vertex represents the material implication "If the literal is true then the literal is also true". Implication graphs were originally used for analyzing complex Boolean expressions. Applications A 2-satisfiability instance in conjunctive normal form can be transformed into an implication graph by replacing each of its disjunctions by a pair of implications. For example, the statement (x_0\lor x_1) can be rewritten as the pair (\neg x_0 \rightarrow x_1), (\neg x_1 \rightarrow x_0). An instance is satisfiable if and only if no literal and its negation belong to the same strongly connected component of its implication graph; this characterization can be used to solve 2-satisfiability instances in linear time. In CDCL SAT-solvers, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parameterized Complexity
In computer science, parameterized complexity is a branch of computational complexity theory that focuses on classifying computational problems according to their inherent difficulty with respect to ''multiple'' parameters of the input or output. The complexity of a problem is then measured as a function of those parameters. This allows the classification of NP-hard problems on a finer scale than in the classical setting, where the complexity of a problem is only measured as a function of the number of bits in the input. The first systematic work on parameterized complexity was done by . Under the assumption that P ≠ NP, there exist many natural problems that require superpolynomial running time when complexity is measured in terms of the input size only, but that are computable in a time that is polynomial in the input size and exponential or worse in a parameter . Hence, if is fixed at a small value and the growth of the function over is relatively small then such p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unique Games Conjecture
In computational complexity theory, the unique games conjecture (often referred to as UGC) is a conjecture made by Subhash Khot in 2002. The conjecture postulates that the problem of determining the approximate ''value'' of a certain type of game, known as a ''unique game'', has NP-hard computational complexity. It has broad applications in the theory of hardness of approximation. If the unique games conjecture is true and P ≠ NP, then for many important problems it is not only impossible to get an exact solution in polynomial time (as postulated by the P versus NP problem), but also impossible to get a good polynomial-time approximation. The problems for which such an inapproximability result would hold include constraint satisfaction problems, which crop up in a wide variety of disciplines. The conjecture is unusual in that the academic world seems about evenly divided on whether it is true or not. Formulations The unique games conjecture can be stated in a numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]