Mu-3 Receptor
The Mu, also known as M, was a series of Japanese solid-fueled carrier rockets, which were launched from Uchinoura between 1966 and 2006. Originally developed by Japan's Institute of Space and Astronautical Science, Mu rockets were later operated by Japan Aerospace Exploration Agency following ISAS becoming part of it. Early Japanese carrier rockets The first Mu rocket, the Mu-1 made a single, sub-orbital, test flight, on 31 October 1966. Subsequently, a series of rockets were produced, designated Mu-3 and Mu-4. In 1969 a suborbital test launch of the Mu-3D was conducted. The first orbital launch attempt for the Mu family, using a Mu-4S, was conducted on 25 September 1970, however the fourth stage did not ignite, and the rocket failed to reach orbit. On 16 February 1971, Tansei 1 was launched by another Mu-4S rocket. Two further Mu-4S launches took place during 1971 and 1972. The Mu-4S was replaced by the Mu-3C, was launched four times between 1974 and 1979, with three succ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
M-V With Astro-E Satellite
The M-V rocket, also called M-5 or Mu-5, was a Japanese solid-fuel rocket designed to launch scientific satellites. It was a member of the Mu family of rockets. The Institute of Space and Astronautical Science (ISAS) began developing the M-V in 1990 at a cost of 15 billion yen. It has three stages and is high, in diameter, and weighs about . It was capable of launching a satellite weighing into an orbit as high as . The first M-V rocket launched the HALCA radio astronomy satellite in 1997, and the second the Nozomi Mars explorer in July 1998. The third rocket attempted to launch the Astro-E X-ray satellite on 10 February 2000 but failed. ISAS recovered from this setback and launched Hayabusa to 25143 Itokawa in 2003. The following M-V launch was the scientific Astro-E2 satellite, a replacement for Astro-E, which took place on 10 July 2005. The final launch was that of the Hinode (SOLAR-B) spacecraft, along with the SSSat microsat and a nanosatellite, HIT-SAT, on 22 Septe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orbital Inclination
Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the Equator, the plane of the satellite's orbit is the same as the Earth's equatorial plane, and the satellite's orbital inclination is 0°. The general case for a circular orbit is that it is tilted, spending half an orbit over the northern hemisphere and half over the southern. If the orbit swung between 20° north latitude and 20° south latitude, then its orbital inclination would be 20°. Orbits The inclination is one of the six orbital elements describing the shape and orientation of a celestial orbit. It is the angle between the orbital plane and the plane of reference, normally stated in degrees. For a satellite orbiting a planet, the plane of reference is usually the plane containing the planet's equator. For pla ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hinotori (satellite)
Hinotori, also known as ASTRO-A before launch, was a Japanese X-ray astronomy satellite. It was developed by the Institute of Space and Astronautical Science (ISAS). Its primary mission was to study of solar flares emanating from the Sun during the solar maximum. It was launched successfully on February 21, 1981 using a M-3S rocket as the vehicle from Uchinoura Space Center The is a space launch facility in the Japanese town of Kimotsuki, Kagoshima Prefecture. Before the establishment of the JAXA space agency in 2003, it was simply called the (KSC). All of Japan's scientific satellites were launched from Uchino ... (known at the time as Kagoshima). After the start of normal operation, it observed a large solar flare and, a month later, succeeded in observing 41 flares of many sizes from the Sun. It reentered the atmosphere on July 11, 1991.ISAS "Solar Observation HINOTORI (ASTRO-A)" retrieved 2014-12-23. The name Hinotori is the Japanese word for Phoenix. Instruments ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
High Earth Orbit
A high Earth orbit is a geocentric orbit with an altitude entirely above that of a geosynchronous orbit (). The orbital periods of such orbits are greater than 24 hours, therefore satellites in such orbits have an apparent retrograde motion – that is, even if they are in a prograde orbit (0° ≤ inclination < 90°), their orbital velocity is lower than al speed, causing their to move westward on 's surface. Examples of satellites in high Earth orbit See al ...
|
|
Hakucho
Hakucho (also known as CORSA-b before launch; CORSA stands for Cosmic Radiation Satellite) was Japan's first X-ray astronomy satellite, developed by the Institute of Space and Aeronautical Science (then a division of the University of Tokyo). It was launched from the Kagoshima Space Center by the ISAS M-3C rocket on the M-3C-4 mission on February 21, 1979 and reentered the atmosphere on April 15, 1985. Hakucho was a replacement for the CORSA satellite which failed to launch due to rocket failure on February 4, 1976. Highlights *Discovery of soft X-ray transient Cen X-4 and Aql X-1 *Discovery of many burst sources *Long-term monitoring of X-ray pulsar (e.g. Vela X-1) *Discovery of 2 Hz variability in the Rapid Burster later named Quasi Period Oscillation. See also * Timeline of artificial satellites and space probes This Timeline of artificial satellites and Space probe A space probe is an artificial satellite that travels through space to collect scientific data. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Medium Earth Orbit
A medium Earth orbit (MEO) is an geocentric orbit, Earth-centered orbit with an altitude above a low Earth orbit (LEO) and below a high Earth orbit (HEO) – between above sea level.''Catalog of Earth Satellite Orbits'' NASA Earth Observatory. 4 September 2009. Accessed 2 May 2021. The boundary between MEO and LEO is an arbitrary altitude chosen by accepted convention, whereas the boundary between MEO and HEO is the particular altitude of a geosynchronous orbit, in which a satellite takes 24 hours to circle the Earth, the same period as the Earth’s own rotation. All satellites in MEO have an orbital period of less than 24 hours, with the minimum period (for a circular orbit at the lowest MEO altitude) about 2 hours. Satellites in MEO or ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |