Moser's Trick
   HOME





Moser's Trick
In differential geometry, a branch of mathematics, the Moser's trick (or Moser's argument) is a method to relate two differential forms \alpha_0 and \alpha_1 on a smooth manifold by a diffeomorphism \psi \in \mathrm(M) such that \psi^* \alpha_1 = \alpha_0, provided that one can find a family of vector fields satisfying a certain ODE. More generally, the argument holds for a family \_ and produce an entire isotopy \psi_t such that \psi_t^* \alpha_t = \alpha_0. It was originally given by Jürgen Moser in 1965 to check when two volume forms are equivalent, but its main applications are in symplectic geometry. It is the standard argument for the modern proof of Darboux's theorem, as well as for the proof of Darboux-Weinstein theorem and other normal form results. General statement Let \_ \subset \Omega^k (M) be a family of differential forms on a compact manifold M. If the ODE \frac \omega_t + \mathcal_ \omega_t = 0 admits a solution \_ \subset \mathfrak(M), then there exists a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as classical antiquity, antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Nikolai Lobachevsky, Lobachevsky. The simplest examples of smooth spaces are the Differential geometry of curves, plane and space curves and Differential geometry of surfaces, surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer Science+Business Media
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, op ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symplectic Basis
In linear algebra, a standard symplectic basis is a basis _i, _i of a symplectic vector space, which is a vector space with a nondegenerate alternating bilinear form \omega, such that \omega(_i, _j) = 0 = \omega(_i, _j), \omega(_i, _j) = \delta_. A symplectic basis of a symplectic vector space always exists; it can be constructed by a procedure similar to the Gram–Schmidt process.Maurice de Gosson: ''Symplectic Geometry and Quantum Mechanics'' (2006), p.7 and pp. 12–13 The existence of the basis implies in particular that the dimension of a symplectic vector space is even if it is finite. See also * Darboux theorem * Symplectic frame bundle * Symplectic spinor bundle *Symplectic vector space In mathematics, a symplectic vector space is a vector space V over a Field (mathematics), field F (for example the real numbers \mathbb) equipped with a symplectic bilinear form. A symplectic bilinear form is a map (mathematics), mapping \omega : ... Notes References *da Silva, A.C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prentice Hall
Prentice Hall was a major American publishing#Textbook_publishing, educational publisher. It published print and digital content for the 6–12 and higher-education market. It was an independent company throughout the bulk of the twentieth century. In its last few years it was owned by, then absorbed into, Savvas Learning Company. In the Web era, it distributed its technical titles through the Safari Books Online e-reference service for some years. History On October 13, 1913, law professor Charles Gerstenberg and his student Richard Ettinger founded Prentice Hall. Gerstenberg and Ettinger took their mothers' maiden names, Prentice and Hall, to name their new company. At the time the name was usually styled as Prentice-Hall (as seen for example on many title pages), per an orthographic norm for Dash#Relationships and connections, coordinate elements within such compounds (compare also ''McGraw-Hill'' with later styling as ''McGraw Hill''). Prentice-Hall became known as a publi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jean Gaston Darboux
Jean-Gaston Darboux FAS MIF FRS FRSE (14 August 1842 – 23 February 1917) was a French mathematician. Life According to his birth certificate, he was born in Nîmes in France on 14 August 1842, at 1 am. However, probably due to the midnight birth, Darboux himself usually reported his own birthday as 13 August, ''e.g.'' in his filled form for Légion d'Honneur. His parents were François Darboux, businessman of mercery, and Alix Gourdoux. The father died when Gaston was 7. His mother undertook the mercery business with great courage, and insisted that her children receive good education. Gaston had a younger brother, Louis, who taught mathematics at the Lycée Nîmes for almost his entire life. He studied at the Nîmes Lycée and the Montpellier Lycée before being accepted as the top qualifier at the École normale supérieure in 1861, and received his PhD there in 1866. His thesis, written under the direction of Michel Chasles, was titled ''Sur les surfaces orthogonal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Coordinate Chart
In topology, a topological manifold is a topological space that locally resembles real ''n''- dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds are topological manifolds by definition. Other types of manifolds are formed by adding structure to a topological manifold (e.g. differentiable manifolds are topological manifolds equipped with a differential structure). Every manifold has an "underlying" topological manifold, obtained by simply "forgetting" the added structure. However, not every topological manifold can be endowed with a particular additional structure. For example, the E8 manifold is a topological manifold which cannot be endowed with a differentiable structure. Formal definition A topological space ''X'' is called locally Euclidean if there is a non-negative integer ''n'' such that every point in ''X'' has a neighborhood which is homeomorphic to real ''n''-space R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symplectic Manifold
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system. Motivation Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poincaré Lemma
In mathematics, the Poincaré lemma gives a sufficient condition for a closed differential form to be exact (while an exact form is necessarily closed). Precisely, it states that every closed ''p''-form on an open ball in R''n'' is exact for ''p'' with . The lemma was introduced by Henri Poincaré in 1886. Informal Discussion Especially in calculus, the Poincaré lemma also says that every closed 1-form on a simply connected open subset in \mathbb^n is exact. In simpler terms, it means that if a differential form is closed in a region that can be shrunk to a point, then it can be written as the derivative of another form; i.e. if dα = 0 on a simplely connected region, we can always find α = dβ; therefore we have d(dβ) = 0, expressed simply as d2 = 0. This concept is used in mathematical physics, particularly in the context of electromagnetism and differential geometry, where it relates to the fact that the boundary of a boundary is always empty, i.e. if you have a surface (a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cartan's Magic Formula
In mathematics, the interior product (also known as interior derivative, interior multiplication, inner multiplication, inner derivative, insertion operator, contraction, or inner derivation) is a degree −1 (anti)derivation on the exterior algebra of differential forms on a smooth manifold. The interior product, named in opposition to the exterior product, should not be confused with an inner product. The interior product \iota_X \omega is sometimes written as X \mathbin \omega. Definition The interior product is defined to be the contraction of a differential form with a vector field. Thus if X is a vector field on the manifold M, then \iota_X : \Omega^p(M) \to \Omega^(M) is the map which sends a p-form \omega to the (p - 1)-form \iota_X \omega defined by the property that (\iota_X\omega)\left(X_1, \ldots, X_\right) = \omega\left(X, X_1, \ldots, X_\right) for any vector fields X_1, \ldots, X_. When \omega is a scalar field (0-form), \iota_X \omega = 0 by convention. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

De Rham Theorem
In mathematics, more specifically in differential geometry, the de Rham theorem says that the ring homomorphism from the de Rham cohomology to the singular cohomology given by integration is an isomorphism. The Poincaré lemma implies that the de Rham cohomology is the sheaf cohomology with the constant sheaf \mathbb. Thus, for abstract reason, the de Rham cohomology is isomorphic as a group to the singular cohomology. But the de Rham theorem gives a more explicit isomorphism between the two cohomologies; thus, connecting analysis and topology more directly. Statement The key part of the theorem is a construction of the de Rham homomorphism. Let ''M'' be a manifold. Then there is a map :k : \Omega^p(M) \to S^p_(M) from the space of differential ''p''-forms to the space of smooth singular ''p''-cochains given by :\omega \mapsto \left(\sigma \mapsto \int_ \omega \right). Stokes' formula implies: k \circ d = \partial \circ k; i.e., k is a chain map and so it induces: : : \operato ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poincaré Duality
In mathematics, the Poincaré duality theorem, named after Henri Poincaré, is a basic result on the structure of the homology (mathematics), homology and cohomology group (mathematics), groups of manifolds. It states that if ''M'' is an ''n''-dimensional Orientability, oriented closed manifold (Compact space, compact and without boundary), then the ''k''th cohomology group of ''M'' is Group isomorphism, isomorphic to the th homology group of ''M'', for all integers ''k'' : H^k(M) \cong H_(M). Poincaré duality holds for any coefficient ring (mathematics), ring, so long as one has taken an orientation with respect to that coefficient ring; in particular, since every manifold has a unique orientation mod 2, Poincaré duality holds mod 2 without any assumption of orientation. History A form of Poincaré duality was first stated, without proof, by Henri Poincaré in 1893. It was stated in terms of Betti numbers: The ''k''th and th Betti numbers of a closed (i.e., compact and witho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE