HOME

TheInfoList



OR:

In
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...
, a standard symplectic basis is a basis _i, _i of a
symplectic vector space In mathematics, a symplectic vector space is a vector space V over a Field (mathematics), field F (for example the real numbers \mathbb) equipped with a symplectic bilinear form. A symplectic bilinear form is a map (mathematics), mapping \omega : ...
, which is a vector space with a nondegenerate alternating bilinear form \omega, such that \omega(_i, _j) = 0 = \omega(_i, _j), \omega(_i, _j) = \delta_. A symplectic basis of a symplectic vector space always exists; it can be constructed by a procedure similar to the Gram–Schmidt process.Maurice de Gosson: ''Symplectic Geometry and Quantum Mechanics'' (2006), p.7 and pp. 12–13 The existence of the basis implies in particular that the dimension of a symplectic vector space is even if it is finite.


See also

* Darboux theorem * Symplectic frame bundle * Symplectic spinor bundle *
Symplectic vector space In mathematics, a symplectic vector space is a vector space V over a Field (mathematics), field F (for example the real numbers \mathbb) equipped with a symplectic bilinear form. A symplectic bilinear form is a map (mathematics), mapping \omega : ...


Notes


References

*da Silva, A.C.,
Lectures on Symplectic Geometry
', Springer (2001). . *Maurice de Gosson: ''Symplectic Geometry and Quantum Mechanics'' (2006) Birkhäuser Verlag, Basel . {{linear-algebra-stub Symplectic geometry