HOME
*





Monoidal Monad
In category theory, a monoidal monad (T,\eta,\mu,T_,T_0) is a monad (T,\eta,\mu) on a monoidal category (C,\otimes,I) such that the functor T:(C,\otimes,I)\to(C,\otimes,I) is a lax monoidal functor and the natural transformations \eta and \mu are monoidal natural transformations. In other words, T is equipped with coherence maps T_:TA\otimes TB\to T(A\otimes B) and T_0:I\to TI satisfying certain properties (again: they are lax monoidal), and the unit \eta: id \Rightarrow T and multiplication \mu:T^2\Rightarrow T are monoidal natural transformations. By monoidality of \eta, the morphisms T_0 and \eta_I are necessarily equal. All of the above can be compressed into the statement that a monoidal monad is a monad in the 2-category \mathsf of monoidal categories, lax monoidal functors, and monoidal natural transformations. Opmonoidal Monads Opmonoidal monads have been studied under various names. Ieke Moerdijk introduced them as "Hopf monads", while in works of Bruguières and Virel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monad (category Theory)
In category theory, a branch of mathematics, a monad (also triple, triad, standard construction and fundamental construction) is a monoid in the category of endofunctors. An endofunctor is a functor mapping a category to itself, and a monad is an endofunctor together with two natural transformations required to fulfill certain coherence conditions. Monads are used in the theory of pairs of adjoint functors, and they generalize closure operators on partially ordered sets to arbitrary categories. Monads are also useful in the theory of datatypes and in functional programming languages, allowing languages with non-mutable states to do things such as simulate for-loops; see Monad (functional programming). Introduction and definition A monad is a certain type of endofunctor. For example, if F and G are a pair of adjoint functors, with F left adjoint to G, then the composition G \circ F is a monad. If F and G are inverse functors, the corresponding monad is the identity functor. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monoidal Category
In mathematics, a monoidal category (or tensor category) is a category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an object ''I'' that is both a left and right identity for ⊗, again up to a natural isomorphism. The associated natural isomorphisms are subject to certain coherence conditions, which ensure that all the relevant diagrams commute. The ordinary tensor product makes vector spaces, abelian groups, ''R''-modules, or ''R''-algebras into monoidal categories. Monoidal categories can be seen as a generalization of these and other examples. Every (small) monoidal category may also be viewed as a "categorification" of an underlying monoid, namely the monoid whose elements are the isomorphism classes of the category's objects and whose binary operation is given by the category's tensor product. A rather different application, of which monoidal categories can be considered an abstractio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lax Monoidal Functor
In category theory, monoidal functors are functors between monoidal categories which preserve the monoidal structure. More specifically, a monoidal functor between two monoidal categories consists of a functor between the categories, along with two ''coherence maps''—a natural transformation and a morphism that preserve monoidal multiplication and unit, respectively. Mathematicians require these coherence maps to satisfy additional properties depending on how strictly they want to preserve the monoidal structure; each of these properties gives rise to a slightly different definition of monoidal functors * The coherence maps of lax monoidal functors satisfy no additional properties; they are not necessarily invertible. * The coherence maps of strong monoidal functors are invertible. * The coherence maps of strict monoidal functors are identity maps. Although we distinguish between these different definitions here, authors may call any one of these simply monoidal functors. Defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monoidal Natural Transformation
Suppose that (\mathcal C,\otimes,I) and (\mathcal D,\bullet, J) are two monoidal categories and :(F,m):(\mathcal C,\otimes,I)\to(\mathcal D,\bullet, J) and (G,n):(\mathcal C,\otimes,I)\to(\mathcal D,\bullet, J) are two lax monoidal functors between those categories. A monoidal natural transformation :\theta:(F,m) \to (G,n) between those functors is a natural transformation In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ... \theta:F \to G between the underlying functors such that the diagrams : and commute for every objects A and B of \mathcal C (see Definition 11 in ). A symmetric monoidal natural transformation is a monoidal natural transformation between symmetric monoidal functors. References {{DEFAULTSORT:Monoidal Natural Transformation Monoidal categories ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lax Monoidal Functor
In category theory, monoidal functors are functors between monoidal categories which preserve the monoidal structure. More specifically, a monoidal functor between two monoidal categories consists of a functor between the categories, along with two ''coherence maps''—a natural transformation and a morphism that preserve monoidal multiplication and unit, respectively. Mathematicians require these coherence maps to satisfy additional properties depending on how strictly they want to preserve the monoidal structure; each of these properties gives rise to a slightly different definition of monoidal functors * The coherence maps of lax monoidal functors satisfy no additional properties; they are not necessarily invertible. * The coherence maps of strong monoidal functors are invertible. * The coherence maps of strict monoidal functors are identity maps. Although we distinguish between these different definitions here, authors may call any one of these simply monoidal functors. Defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strict 2-category
In category theory, a strict 2-category is a category with "morphisms between morphisms", that is, where each hom-set itself carries the structure of a category. It can be formally defined as a category enriched over Cat (the category of categories and functors, with the monoidal structure given by product of categories). The concept of 2-category was first introduced by Charles Ehresmann in his work on enriched categories in 1965. The more general concept of bicategory (or ''weak'' 2-''category''), where composition of morphisms is associative only up to a 2-isomorphism, was introduced in 1968 by Jean Bénabou.Jean Bénabou, Introduction to bicategories, in Reports of the Midwest Category Seminar, Springer, Berlin, 1967, pp. 1--77. Definition A 2-category C consists of: * A class of 0-''cells'' (or ''objects'') , , .... * For all objects and , a category \mathbf(A,B). The objects f,g: A \to B of this category are called 1-''cells'' and its morphisms \alpha: f \Rig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ieke Moerdijk
Izak (Ieke) Moerdijk (; born 23 January 1958) is a Dutch mathematician, currently working at Utrecht University, who in 2012 won the Spinoza prize. Education and career Moerdijk studied mathematics, philosophy and general linguistics at the University of Amsterdam. He obtained his PhD ''cum laude'' in 1985 at the same institution. His thesis was entitled ''Topics in intuitionism and topos theory'' and was written under the supervision of Anne Sjerp Troelstra. After that, he worked as postdoctoral researcher at the University of Chicago and Cambridge. From 1988 to 2011 he was professor at Utrecht University. After working at the Mathematical Institute of the Radboud University Nijmegen for a few years, he returned to Utrecht University in 2016. In 2000 Moerdijk was an invited speaker to the 3rd European Congress of Mathematics. He was elected member of the Royal Netherlands Academy of Arts and Sciences in 2006 and of the Academia Europaea in 2014. Moerdijk received the 2011 De ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bialgebra
In mathematics, a bialgebra over a field ''K'' is a vector space over ''K'' which is both a unital associative algebra and a counital coassociative coalgebra. The algebraic and coalgebraic structures are made compatible with a few more axioms. Specifically, the comultiplication and the counit are both unital algebra homomorphisms, or equivalently, the multiplication and the unit of the algebra both are coalgebra morphisms. (These statements are equivalent since they are expressed by the same commutative diagrams.) Similar bialgebras are related by bialgebra homomorphisms. A bialgebra homomorphism is a linear map that is both an algebra and a coalgebra homomorphism. As reflected in the symmetry of the commutative diagrams, the definition of bialgebra is self-dual, so if one can define a dual of ''B'' (which is always possible if ''B'' is finite-dimensional), then it is automatically a bialgebra. Formal definition (''B'', ∇, η, Δ, ε) is a bialgebra over ''K'' if it h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Advances In Mathematics
''Advances in Mathematics'' is a peer-reviewed scientific journal covering research on pure mathematics. It was established in 1961 by Gian-Carlo Rota. The journal publishes 18 issues each year, in three volumes. At the origin, the journal aimed at publishing articles addressed to a broader "mathematical community", and not only to mathematicians in the author's field. Herbert Busemann writes, in the preface of the first issue, "The need for expository articles addressing either all mathematicians or only those in somewhat related fields has long been felt, but little has been done outside of the USSR. The serial publication ''Advances in Mathematics'' was created in response to this demand." Abstracting and indexing The journal is abstracted and indexed in:Abstracting and Indexing
*



Hopf Algebra
Hopf is a German surname. Notable people with the surname include: *Eberhard Hopf (1902–1983), Austrian mathematician *Hans Hopf (1916–1993), German tenor *Heinz Hopf (1894–1971), German mathematician *Heinz Hopf (actor) (1934–2001), Swedish actor *Ludwig Hopf (1884–1939), German physicist *Maria Hopf Maria Hopf (13 September 1913 – 24 August 2008) was a pioneering archaeobotanist, based at the RGZM, Mainz. Career Hopf studied botany from 1941–44, receiving her doctorate in 1947 on the subject of soil microbes. She then worked in phyto ... (1914-2008), German botanist and archaeologist {{surname, Hopf German-language surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monad (category Theory)
In category theory, a branch of mathematics, a monad (also triple, triad, standard construction and fundamental construction) is a monoid in the category of endofunctors. An endofunctor is a functor mapping a category to itself, and a monad is an endofunctor together with two natural transformations required to fulfill certain coherence conditions. Monads are used in the theory of pairs of adjoint functors, and they generalize closure operators on partially ordered sets to arbitrary categories. Monads are also useful in the theory of datatypes and in functional programming languages, allowing languages with non-mutable states to do things such as simulate for-loops; see Monad (functional programming). Introduction and definition A monad is a certain type of endofunctor. For example, if F and G are a pair of adjoint functors, with F left adjoint to G, then the composition G \circ F is a monad. If F and G are inverse functors, the corresponding monad is the identity functor. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]