HOME
*



picture info

Monads In Functional Programming
In functional programming, a monad is a software design pattern with a structure that combines program fragments ( functions) and wraps their return values in a type with additional computation. In addition to defining a wrapping monadic type, monads define two operators: one to wrap a value in the monad type, and another to compose together functions that output values of the monad type (these are known as monadic functions). General-purpose languages use monads to reduce boilerplate code needed for common operations (such as dealing with undefined values or fallible functions, or encapsulating bookkeeping code). Functional languages use monads to turn complicated sequences of functions into succinct pipelines that abstract away control flow, and side-effects. Both the concept of a monad and the term originally come from category theory, where a monad is defined as a functor with additional structure. Research beginning in the late 1980s and early 1990s established that monads ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Functional Programming
In computer science, functional programming is a programming paradigm where programs are constructed by Function application, applying and Function composition (computer science), composing Function (computer science), functions. It is a declarative programming paradigm in which function definitions are Tree (data structure), trees of Expression (computer science), expressions that map Value (computer science), values to other values, rather than a sequence of Imperative programming, imperative Statement (computer science), statements which update the State (computer science), running state of the program. In functional programming, functions are treated as first-class citizens, meaning that they can be bound to names (including local Identifier (computer languages), identifiers), passed as Parameter (computer programming), arguments, and Return value, returned from other functions, just as any other data type can. This allows programs to be written in a Declarative programming, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Library (computing)
In computer science, a library is a collection of non-volatile memory, non-volatile resources used by computer programs, often for software development. These may include configuration data, documentation, help data, message templates, Code reuse, pre-written code and subroutines, Class (computer science), classes, Value (computer science), values or Data type, type specifications. In OS/360 and successors, IBM's OS/360 and its successors they are referred to as Data set (IBM mainframe)#Partitioned datasets, partitioned data sets. A library is also a collection of implementations of behavior, written in terms of a language, that has a well-defined interface (computing), interface by which the behavior is invoked. For instance, people who want to write a higher-level program can use a library to make system calls instead of implementing those system calls over and over again. In addition, the behavior is provided for reuse by multiple independent programs. A program invokes the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Endofunctor
In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied. The words ''category'' and ''functor'' were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used ''functor'' in a linguistic context; see function word. Definition Let ''C'' and ''D'' be categories. A functor ''F'' from ''C'' to ''D'' is a mapping that * associates each object X in ''C'' to an object F(X) in ''D'', * associates each morphism f \colon X \to Y in ''C'' to a morphism F(f) \colon F(X) \to F(Y) in ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kleisli Triple
In category theory, a Kleisli category is a category naturally associated to any monad ''T''. It is equivalent to the category of free ''T''-algebras. The Kleisli category is one of two extremal solutions to the question ''Does every monad arise from an adjunction?'' The other extremal solution is the Eilenberg–Moore category. Kleisli categories are named for the mathematician Heinrich Kleisli. Formal definition Let ⟨''T'', ''η'', ''μ''⟩ be a monad Monad may refer to: Philosophy * Monad (philosophy), a term meaning "unit" **Monism, the concept of "one essence" in the metaphysical and theological theory ** Monad (Gnosticism), the most primal aspect of God in Gnosticism * ''Great Monad'', a ... over a category ''C''. The Kleisli category of ''C'' is the category ''C''''T'' whose objects and morphisms are given by :\begin\mathrm() &= \mathrm(), \\ \mathrm_(X,Y) &= \mathrm_(X,TY).\end That is, every morphism ''f: X → T Y'' in ''C'' (with codomain ''TY'') can al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Anonymous Function
In computer programming, an anonymous function (function literal, lambda abstraction, lambda function, lambda expression or block) is a function definition that is not bound to an identifier. Anonymous functions are often arguments being passed to higher-order functions or used for constructing the result of a higher-order function that needs to return a function. If the function is only used once, or a limited number of times, an anonymous function may be syntactically lighter than using a named function. Anonymous functions are ubiquitous in functional programming languages and other languages with first-class functions, where they fulfil the same role for the function type as literals do for other data types. Anonymous functions originate in the work of Alonzo Church in his invention of the lambda calculus, in which all functions are anonymous, in 1936, before electronic computers. In several programming languages, anonymous functions are introduced using the keyword ''lambda' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Function Composition
In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and are composed to yield a function that maps in domain to in codomain . Intuitively, if is a function of , and is a function of , then is a function of . The resulting ''composite'' function is denoted , defined by for all in . The notation is read as " of ", " after ", " circle ", " round ", " about ", " composed with ", " following ", " then ", or " on ", or "the composition of and ". Intuitively, composing functions is a chaining process in which the output of function feeds the input of function . The composition of functions is a special case of the composition of relations, sometimes also denoted by \circ. As a result, all properties of composition of relations are true of composition of functions, such as the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

YouTube
YouTube is a global online video platform, online video sharing and social media, social media platform headquartered in San Bruno, California. It was launched on February 14, 2005, by Steve Chen, Chad Hurley, and Jawed Karim. It is owned by Google, and is the List of most visited websites, second most visited website, after Google Search. YouTube has more than 2.5 billion monthly users who collectively watch more than one billion hours of videos each day. , videos were being uploaded at a rate of more than 500 hours of content per minute. In October 2006, YouTube was bought by Google for $1.65 billion. Google's ownership of YouTube expanded the site's business model, expanding from generating revenue from advertisements alone, to offering paid content such as movies and exclusive content produced by YouTube. It also offers YouTube Premium, a paid subscription option for watching content without ads. YouTube also approved creators to participate in Google's Google AdSens ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pattern Matching
In computer science, pattern matching is the act of checking a given sequence of tokens for the presence of the constituents of some pattern. In contrast to pattern recognition, the match usually has to be exact: "either it will or will not be a match." The patterns generally have the form of either sequences or tree structures. Uses of pattern matching include outputting the locations (if any) of a pattern within a token sequence, to output some component of the matched pattern, and to substitute the matching pattern with some other token sequence (i.e., search and replace). Sequence patterns (e.g., a text string) are often described using regular expressions and matched using techniques such as backtracking. Tree patterns are used in some programming languages as a general tool to process data based on its structure, e.g. C#, F#, Haskell, ML, Python, Ruby, Rust, Scala, Swift and the symbolic mathematics language Mathematica have special syntax for expressing tree patt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divide-by-zero
In mathematics, division by zero is division where the divisor (denominator) is zero. Such a division can be formally expressed as \tfrac, where is the dividend (numerator). In ordinary arithmetic, the expression has no meaning, as there is no number that, when multiplied by , gives (assuming a \neq 0); thus, division by zero is undefined. Since any number multiplied by zero is zero, the expression \tfrac is also undefined; when it is the form of a limit, it is an indeterminate form. Historically, one of the earliest recorded references to the mathematical impossibility of assigning a value to \tfrac is contained in Anglo-Irish philosopher George Berkeley's criticism of infinitesimal calculus in 1734 in '' The Analyst'' ("ghosts of departed quantities"). There are mathematical structures in which \tfrac is defined for some such as in the Riemann sphere (a model of the extended complex plane) and the Projectively extended real line; however, such structures do not satisfy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Generic Type
Generic programming is a style of computer programming in which algorithms are written in terms of types ''to-be-specified-later'' that are then ''instantiated'' when needed for specific types provided as parameters. This approach, pioneered by the ML programming language in 1973, permits writing common functions or types that differ only in the set of types on which they operate when used, thus reducing duplication. Such software entities are known as ''generics'' in Ada, C#, Delphi, Eiffel, F#, Java, Nim, Python, Go, Rust, Swift, TypeScript and Visual Basic .NET. They are known as ''parametric polymorphism'' in ML, Scala, Julia, and Haskell (the Haskell community also uses the term "generic" for a related but somewhat different concept); ''templates'' in C++ and D; and ''parameterized types'' in the influential 1994 book ''Design Patterns''. The term "generic programming" was originally coined by David Musser and Alexander Stepanov in a more specific sense than th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Enumerated Type
In computer programming, an enumerated type (also called enumeration, enum, or factor in the R programming language, and a categorical variable in statistics) is a data type consisting of a set of named values called ''elements'', ''members'', ''enumeral'', or ''enumerators'' of the type. The enumerator names are usually identifiers that behave as constants in the language. An enumerated type can be seen as a degenerate tagged union of unit type. A variable that has been declared as having an enumerated type can be assigned any of the enumerators as a value. In other words, an enumerated type has values that are different from each other, and that can be compared and assigned, but are not specified by the programmer as having any particular concrete representation in the computer's memory; compilers and interpreters can represent them arbitrarily. For example, the four suits in a deck of playing cards may be four enumerators named ''Club'', ''Diamond'', ''Heart'', and ''Spade'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Option Type
In programming languages (especially functional programming languages) and type theory, an option type or maybe type is a polymorphic type that represents encapsulation of an optional value; e.g., it is used as the return type of functions which may or may not return a meaningful value when they are applied. It consists of a constructor which either is empty (often named None or Nothing), or which encapsulates the original data type A (often written Just A or Some A). A distinct, but related concept outside of functional programming, which is popular in object-oriented programming, is called nullable types (often expressed as A?). The core difference between option types and nullable types is that option types support nesting (e.g. Maybe (Maybe String) ≠ Maybe String), while nullable types do not (e.g. String?? = String?). Theoretical aspects In type theory, it may be written as: A^ = A + 1. This expresses the fact that for a given set of values in A, an option type adds ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]