Model Category
In mathematics, particularly in homotopy theory, a model category is a category with distinguished classes of morphisms ('arrows') called ' weak equivalences', ' fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes (derived category theory). The concept was introduced by . In recent decades, the language of model categories has been used in some parts of algebraic ''K''-theory and algebraic geometry, where homotopy-theoretic approaches led to deep results. Motivation Model categories can provide a natural setting for homotopy theory: the category of topological spaces is a model category, with the homotopy corresponding to the usual theory. Similarly, objects that are thought of as spaces often admit a model category structure, such as the category of simplicial sets. Another model category is the category of chain complexes of ''R''-modules for a commutative ring ''R''. Homotopy th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Retract (category Theory)
In category theory, a branch of mathematics, a section is a right inverse of some morphism. Dually, a retraction is a left inverse of some morphism. In other words, if f: X\to Y and g: Y\to X are morphisms whose composition f \circ g: Y\to Y is the identity morphism on Y, then g is a section of f, and f is a retraction of g. Every section is a monomorphism (every morphism with a left inverse is left-cancellative), and every retraction is an epimorphism (every morphism with a right inverse is right-cancellative). In algebra, sections are also called split monomorphisms and retractions are also called split epimorphisms. In an abelian category, if f: X\to Y is a split epimorphism with split monomorphism g: Y\to X, then X is isomorphic to the direct sum of Y and the kernel of f. The synonym coretraction for section is sometimes seen in the literature, although rarely in recent work. Properties * A section that is also an epimorphism is an isomorphism. Dually a retraction that is al ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Epimorphism
In category theory, an epimorphism (also called an epic morphism or, colloquially, an epi) is a morphism ''f'' : ''X'' → ''Y'' that is right-cancellative in the sense that, for all objects ''Z'' and all morphisms , : g_1 \circ f = g_2 \circ f \implies g_1 = g_2. Epimorphisms are categorical analogues of onto or surjective functions (and in the category of sets the concept corresponds exactly to the surjective functions), but they may not exactly coincide in all contexts; for example, the inclusion \mathbb\to\mathbb is a ring epimorphism. The dual of an epimorphism is a monomorphism (i.e. an epimorphism in a category ''C'' is a monomorphism in the dual category ''C''op). Many authors in abstract algebra and universal algebra define an epimorphism simply as an ''onto'' or surjective homomorphism. Every epimorphism in this algebraic sense is an epimorphism in the sense of category theory, but the converse is not true in all categories. In this article, the term "epimorphism" w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cokernel
The cokernel of a linear mapping of vector spaces is the quotient space of the codomain of by the image of . The dimension of the cokernel is called the ''corank'' of . Cokernels are dual to the kernels of category theory, hence the name: the kernel is a subobject of the domain (it maps to the domain), while the cokernel is a quotient object of the codomain (it maps from the codomain). Intuitively, given an equation that one is seeking to solve, the cokernel measures the ''constraints'' that must satisfy for this equation to have a solution – the obstructions to a solution – while the kernel measures the ''degrees of freedom'' in a solution, if one exists. This is elaborated in intuition, below. More generally, the cokernel of a morphism in some category (e.g. a homomorphism between groups or a bounded linear operator between Hilbert spaces) is an object and a morphism such that the composition is the zero morphism of the category, and furthermore is universa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monomorphism
In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from to is often denoted with the notation X\hookrightarrow Y. In the more general setting of category theory, a monomorphism (also called a monic morphism or a mono) is a left-cancellative morphism. That is, an arrow such that for all objects and all morphisms , : f \circ g_1 = f \circ g_2 \implies g_1 = g_2. Monomorphisms are a categorical generalization of injective functions (also called "one-to-one functions"); in some categories the notions coincide, but monomorphisms are more general, as in the examples below. The categorical dual of a monomorphism is an epimorphism, that is, a monomorphism in a category ''C'' is an epimorphism in the dual category ''C''op. Every section is a monomorphism, and every retraction is an epimorphism. Relation to invertibility Left-invertible morphisms are necessarily monic: if ''l'' is a left inverse for ''f'' (meaning ' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isomorphism
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσος ''isos'' "equal", and μορφή ''morphe'' "form" or "shape". The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may be identified. In mathematical jargon, one says that two objects are . An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a canonical isomorphism (a canonical map that is an isomorphism) if there is only one isomorphism between the two structures (as it is the case for solutions of a univer ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homotopy
In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (, ; , ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology. In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces, CW complexes, or spectra. Formal definition Formally, a homotopy between two continuous functions ''f'' and ''g'' from a topological space ''X'' to a topological space ''Y'' is defined to be a continuous function H: X \times ,1\to Y from the product of the space ''X'' with the unit interval , 1to ''Y'' such that H(x,0) = f(x) and H(x,1) = g(x) for all x \in X. If we think of the second ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hurewicz Fibration
The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics. Fibrations are used, for example, in postnikov-systems or obstruction theory. In this article, all mappings are continuous mappings between topological spaces. Formal definitions Homotopy lifting property A mapping p \colon E \to B satisfies the homotopy lifting property for a space X if: * for every homotopy h \colon X \times , 1\to B and * for every mapping (also called lift) \tilde h_0 \colon X \to E lifting h, _ = h_0 (i.e. h_0 = p \circ \tilde h_0) there exists a (not necessarily unique) homotopy \tilde h \colon X \times , 1\to E lifting h (i.e. h = p \circ \tilde h) with \tilde h_0 = \tilde h, _. The following commutative diagram shows the situation:^ Fibration A fibration (also called Hurewicz fibration) is a mapping p \colon E \to B satisfying the homotopy lifting property for all spaces X. The space B is called base sp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Of Topological Spaces
In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again continuous, and the identity function is continuous. The study of Top and of properties of topological spaces using the techniques of category theory is known as categorical topology. N.B. Some authors use the name Top for the categories with topological manifolds, with compactly generated spaces as objects and continuous maps as morphisms or with the category of compactly generated weak Hausdorff spaces. As a concrete category Like many categories, the category Top is a concrete category, meaning its objects are sets with additional structure (i.e. topologies) and its morphisms are functions preserving this structure. There is a natural forgetful functor :''U'' : Top → Set to the category of sets which assigns to each topological spa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Opposite Category
In category theory, a branch of mathematics, the opposite category or dual category ''C''op of a given category ''C'' is formed by reversing the morphisms, i.e. interchanging the source and target of each morphism. Doing the reversal twice yields the original category, so the opposite of an opposite category is the original category itself. In symbols, (C^)^ = C. Examples * An example comes from reversing the direction of inequalities in a partial order. So if ''X'' is a set and ≤ a partial order relation, we can define a new partial order relation ≤op by :: ''x'' ≤op ''y'' if and only if ''y'' ≤ ''x''. : The new order is commonly called dual order of ≤, and is mostly denoted by ≥. Therefore, duality plays an important role in order theory and every purely order theoretic concept has a dual. For example, there are opposite pairs child/parent, descendant/ancestor, infimum/supremum, down-set/ up-set, ideal/filter etc. This order theoretic duality is in turn a special c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Weak Factorization System
In mathematics, it can be shown that every function can be written as the composite of a surjective function followed by an injective function. Factorization systems are a generalization of this situation in category theory. Definition A factorization system (''E'', ''M'') for a category C consists of two classes of morphisms ''E'' and ''M'' of C such that: #''E'' and ''M'' both contain all isomorphisms of C and are closed under composition. #Every morphism ''f'' of C can be factored as f=m\circ e for some morphisms e\in E and m\in M. #The factorization is ''functorial'': if u and v are two morphisms such that vme=m'e'u for some morphisms e, e'\in E and m, m'\in M, then there exists a unique morphism w making the following diagram commute: ''Remark:'' (u,v) is a morphism from me to m'e' in the arrow category. Orthogonality Two morphisms e and m are said to be ''orthogonal'', denoted e\downarrow m, if for every pair of morphisms u and v such that ve=mu there is a unique morph ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complete Category
In mathematics, a complete category is a category in which all small limits exist. That is, a category ''C'' is complete if every diagram ''F'' : ''J'' → ''C'' (where ''J'' is small) has a limit in ''C''. Dually, a cocomplete category is one in which all small colimits exist. A bicomplete category is a category which is both complete and cocomplete. The existence of ''all'' limits (even when ''J'' is a proper class) is too strong to be practically relevant. Any category with this property is necessarily a thin category: for any two objects there can be at most one morphism from one object to the other. A weaker form of completeness is that of finite completeness. A category is finitely complete if all finite limits exists (i.e. limits of diagrams indexed by a finite category ''J''). Dually, a category is finitely cocomplete if all finite colimits exist. Theorems It follows from the existence theorem for limits that a category is complete if and only if it has equalizers (of all ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |