HOME
*





Mir-199 MicroRNA Precursor
The miR-199 microRNA precursor is a short non-coding RNA gene involved in gene regulation. miR-199 genes have now been predicted or experimentally confirmed in mouse, human and a further 21 other species. microRNAs are transcribed as ~70 nucleotide precursors and subsequently processed by the Dicer enzyme to give a ~22 nucleotide product. The mature products are thought to have regulatory roles through complementarity to mRNA. Origin and evolution of miR-199 miR-199 has been shown to be a vertebrate specific miR family that emerge at the origin of the vertebrate lineage Desvignes, T; Postlethwait JH. 2013. Evolution of the miR199-214 cluster and vertebrate skeletal development. Submitted to RNA Biology. Three paralogs of miR-199 can usually be found in non-teleost vertebrate species and 4 to 5 copies in the teleost species. All miR-199 genes are located on opposite strand of orthologous intron of Dynamin genes. Within Dynamin3 gene (''Dnm3''), miR-199 is associated with miR-214 an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Secondary Structure
Protein secondary structure is the three dimensional conformational isomerism, form of ''local segments'' of proteins. The two most common Protein structure#Secondary structure, secondary structural elements are alpha helix, alpha helices and beta sheets, though beta turns and omega loops occur as well. Secondary structure elements typically spontaneously form as an intermediate before the protein protein folding, folds into its three dimensional protein tertiary structure, tertiary structure. Secondary structure is formally defined by the pattern of hydrogen bonds between the Amine, amino hydrogen and carboxyl oxygen atoms in the peptide backbone chain, backbone. Secondary structure may alternatively be defined based on the regular pattern of backbone Dihedral angle#Dihedral angles of proteins, dihedral angles in a particular region of the Ramachandran plot regardless of whether it has the correct hydrogen bonds. The concept of secondary structure was first introduced by Kaj Ulrik ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


DNM3
Dynamin-3 is a protein that in humans is encoded by the ''DNM3'' gene. The protein encoded by this gene is a member of the dynamin Dynamin is a GTPase responsible for endocytosis in the eukaryotic cell. Dynamin is part of the "dynamin superfamily Dynamin Superfamily Protein (DSP) is a protein superfamily includes classical dynamins, GBPs, Mx proteins, OPA1, mitofusins i ... family which possess mechanochemical properties involved in actin-membrane processes, predominantly in membrane budding. DNM3 is upregulated in Sézary's syndrome. References Further reading * * * * * * * * * * * * * * * External links

* {{gene-1-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hypoxia (medical)
Hypoxia is a condition in which the body or a region of the body is deprived of adequate oxygen supply at the tissue level. Hypoxia may be classified as either '' generalized'', affecting the whole body, or ''local'', affecting a region of the body. Although hypoxia is often a pathological condition, variations in arterial oxygen concentrations can be part of the normal physiology, for example, during strenuous physical exercise.. Hypoxia differs from hypoxemia and anoxemia, in that hypoxia refers to a state in which oxygen present in a tissue or the whole body is insufficient, whereas hypoxemia and anoxemia refer specifically to states that have low or no oxygen in the blood. Hypoxia in which there is complete absence of oxygen supply is referred to as anoxia. Hypoxia can be due to external causes, when the breathing gas is hypoxic, or internal causes, such as reduced effectiveness of gas transfer in the lungs, reduced capacity of the blood to carry oxygen, compromised general ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alcoholic Liver Disease
Alcoholic liver disease (ALD), also called alcohol-related liver disease (ARLD), is a term that encompasses the liver manifestations of alcohol overconsumption, including fatty liver, alcoholic hepatitis, and chronic hepatitis with liver fibrosis or cirrhosis. It is the major cause of liver disease in Western countries. Although steatosis (fatty liver disease) will develop in any individual who consumes a large quantity of alcoholic beverages over a long period of time, this process is transient and reversible. More than 90% of all heavy drinkers develop fatty liver whilst about 25% develop the more severe alcoholic hepatitis, and 15% liver cirrhosis. Risk factors Risk factors known as of 2010 are: * Quantity of alcohol taken: Consumption of 60–80 g per day (14 g is considered one standard drink in the US, i.e., 1.5 fl oz hard liquor, 5 fl oz wine, 12 fl oz beer; drinking a six-pack of 5% ABV beer daily would be 84 g and just over the upper limit) for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Twist Transcription Factor
Twist-related protein 1 (TWIST1) also known as class A basic helix–loop–helix protein 38 (bHLHa38) is a basic helix-loop-helix transcription factor that in humans is encoded by the ''TWIST1'' gene. Function Basic helix-loop-helix (bHLH) transcription factors have been implicated in cell lineage determination and differentiation. The protein encoded by this gene is a bHLH transcription factor and shares similarity with another bHLH transcription factor, Dermo1 (a.k.a. TWIST2). The strongest expression of this mRNA is in placental tissue; in adults, mesodermally derived tissues express this mRNA preferentially. Twist1 is thought to regulate osteogenic lineage. Clinical significance Mutations in the TWIST1 gene are associated with Saethre–Chotzen syndrome, breast cancer, and Sézary syndrome. As an oncogene Twist plays an essential role in cancer metastasis. Over-expression of Twist or methylation of its promoter is common in metastatic carcinomas. Hence targeting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mothers Against Decapentaplegic Homolog 1
Mothers against decapentaplegic homolog 1 also known as SMAD family member 1 or SMAD1 is a protein that in humans is encoded by the ''SMAD1'' gene. Nomenclature SMAD1 belongs to the SMAD, a family of proteins similar to the gene products of the ''Drosophila'' gene 'mothers against decapentaplegic' (Mad) and the ''C. elegans'' gene Sma. The name is a combination of the two; and based on a tradition of such unusual naming within the gene research community. It was found that a mutation in the 'Drosophila' gene, ''MAD'', in the mother, repressed the gene, ''decapentaplegic'', in the embryo. Mad mutations can be placed in an allelic series based on the relative severity of the maternal effect enhancement of weak dpp alleles, thus explaining the name Mothers against dpp. Function SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways. This protein mediates the signals of the bone morphogenetic proteins (BMPs), which are involved ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bone Morphogenetic Protein 2
Bone morphogenetic protein 2 or BMP-2 belongs to the TGF-β superfamily of proteins. Function BMP-2 like other bone morphogenetic proteins, plays an important role in the development of bone and cartilage. It is involved in the hedgehog pathway, TGF beta signaling pathway, and in cytokine-cytokine receptor interaction. It is also involved in cardiac cell differentiation and epithelial to mesenchymal transition. Like many other proteins from the BMP family, BMP-2 has been demonstrated to potently induce osteoblast differentiation in a variety of cell types. BMP-2 may be involved in white adipogenesis and may have metabolic effects. Interactions Bone morphogenetic protein 2 has been shown to interact with BMPR1A. Clinical use and complications Bone morphogenetic protein 2 is shown to stimulate the production of bone. Recombinant human protein (rhBMP-2) is currently available for orthopaedic usage in the United States. Implantation of BMP-2 is performed using a vari ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mesenchyme
Mesenchyme () is a type of loosely organized animal embryonic connective tissue of undifferentiated cells that give rise to most tissues, such as skin, blood or bone. The interactions between mesenchyme and epithelium help to form nearly every organ in the developing embryo. Vertebrates Structure Mesenchyme is characterized morphologically by a prominent ground substance matrix containing a loose aggregate of reticular fibers and unspecialized mesenchymal stem cells. Mesenchymal cells can migrate easily (in contrast to epithelial cells, which lack mobility), are organized into closely adherent sheets, and are polarized in an apical-basal orientation. Development The mesenchyme originates from the mesoderm. From the mesoderm, the mesenchyme appears as an embryologically primitive "soup". This "soup" exists as a combination of the mesenchymal cells plus serous fluid plus the many different tissue proteins. Serous fluid is typically stocked with the many serous elements, such a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




MiR-214
__NOTOC__ miR-214 is a vertebrate-specific family of microRNA precursors. The ~22  nucleotide mature miRNA sequence is excised from the precursor hairpin by the enzyme Dicer. This sequence then associates with RISC which effects RNA interference. Origin and evolution of miR-214 miR-214 is a vertebrate-specific miR family that possesses one member in non-teleost vertebrates and two members in teleost fish. miR-214 is likely to have emerged within the Dnm3 gene after the divergence of jawed and jawless vertebrates and is located on the opposite strand of an intron of Dnm3 and is associated in an expression cluster with miR-199. Function miR-214 is a "melano-miR", so-called because it is thought to encourage the metastasis of melanoma. Specifically, the mature microRNA excised from miR-214 is predicted to target two activating protein 2 transcription factors, bringing about downstream effects on a number of genes regulating vital cell cycle processes, such as apoptosis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Squamous Cell Carcinoma
Squamous-cell carcinomas (SCCs), also known as epidermoid carcinomas, comprise a number of different types of cancer that begin in squamous cells. These cells form on the surface of the skin, on the lining of hollow organs in the body, and on the lining of the respiratory and digestive tracts. Common types include: * Squamous-cell skin cancer: A type of skin cancer * Squamous-cell carcinoma of the lung: A type of lung cancer * Squamous-cell thyroid carcinoma: A type of thyroid cancer * Esophageal squamous-cell carcinoma: A type of esophageal cancer * Squamous-cell carcinoma of the vagina: A type of vaginal cancer Despite sharing the name "squamous-cell carcinoma", the SCCs of different body sites can show differences in their presented symptoms, natural history, prognosis, and response to treatment. By body location Human papillomavirus infection has been associated with SCCs of the oropharynx, lung, fingers, and anogenital region. Head and neck cancer About 90% of cases ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


TaqMan
TaqMan probes are hydrolysis probes that are designed to increase the specificity of quantitative PCR. The method was first reported in 1991 by researcher Kary Mullis at Cetus Corporation, and the technology was subsequently developed by Hoffmann-La Roche for diagnostic assays and by Applied Biosystems (now part of Thermo Fisher Scientific) for research applications. The TaqMan probe principle relies on the 5´–3´ exonuclease activity of ''Taq'' polymerase to cleave a dual-labeled probe during hybridization to the complementary target sequence and fluorophore-based detection. As in other quantitative PCR methods, the resulting fluorescence signal permits quantitative measurements of the accumulation of the product during the exponential stages of the PCR; however, the TaqMan probe significantly increases the specificity of the detection. TaqMan probes were named after the videogame Pac-Man (''Taq'' Polymerase + PacMan = TaqMan) as its mechanism is based on the Pac-Man principle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

C-Met
c-Met, also called tyrosine-protein kinase Met or hepatocyte growth factor receptor (HGFR), is a protein that in humans is encoded by the ''MET'' gene. The protein possesses tyrosine kinase activity. The primary single chain precursor protein is post-translationally cleaved to produce the alpha and beta subunits, which are disulfide linked to form the mature receptor. MET is a single pass tyrosine kinase receptor essential for embryonic development, organogenesis and wound healing. Hepatocyte growth factor/Scatter Factor (HGF/SF) and its splicing isoform (NK1, NK2) are the only known ligands of the MET receptor. MET is normally expressed by cells of epithelial origin, while expression of HGF/SF is restricted to cells of mesenchymal origin. When HGF/SF binds its cognate receptor MET it induces its dimerization through a not yet completely understood mechanism leading to its activation. Abnormal MET activation in cancer correlates with poor prognosis, where aberrantly active MET t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]