Minkowski Addition
   HOME



picture info

Minkowski Addition
In geometry, the Minkowski sum of two set (mathematics), sets of position vectors ''A'' and ''B'' in Euclidean space is formed by vector addition, adding each vector in ''A'' to each vector in ''B'': A + B = \ The Minkowski difference (also ''Minkowski subtraction'', ''Minkowski decomposition'', or ''geometric difference'') is the corresponding inverse, where (A - B) produces a set that could be summed with ''B'' to recover ''A''. This is defined as the Complement (set theory), complement of the Minkowski sum of the complement of ''A'' with the reflection of ''B'' about the origin. \begin -B &= \\\ A - B &= (A^\complement + (-B))^\complement \end This definition allows a symmetrical relationship between the Minkowski sum and difference. Note that alternately taking the sum and difference with ''B'' is not necessarily equivalent. The sum can fill gaps which the difference may not re-open, and the difference can erase small islands which the sum cannot recreate from nothing. \be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Zero Vector
In mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context. Additive identities An '' additive identity'' is the identity element in an additive group or monoid. It corresponds to the element 0 such that for all x in the group, . Some examples of additive identity include: * The zero vector under vector addition: the vector whose components are all 0; in a normed vector space its norm (length) is also 0. Often denoted as \mathbf or \vec. * The zero function or zero map defined by , under pointwise addition * The ''empty set'' under set union * An '' empty sum'' or ''empty coproduct'' * An ''initial object'' in a category (an empty coproduct, and so an identity under coproducts) Absorbing elements An '' absorbing element'' in a multiplicative semigroup or semiring generalises the property . Examples include: *The ''empty set'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]



MORE