HOME
*



picture info

Meyniel Graph
In graph theory, a Meyniel graph is a graph in which every odd cycle of length five or more has at least two chords (edges connecting non-consecutive vertices of the cycle). The chords may be uncrossed (as shown in the figure) or they may cross each other, as long as there are at least two of them. The Meyniel graphs are named after Henri Meyniel (also known for Meyniel's conjecture), who proved that they are perfect graphs in 1976,. long before the proof of the strong perfect graph theorem completely characterized the perfect graphs. The same result was independently discovered by .. Perfection The Meyniel graphs are a subclass of the perfect graphs. Every induced subgraph of a Meyniel graph is another Meyniel graph, and in every Meyniel graph the size of a maximum clique equals the minimum number of colors needed in a graph coloring. Thus, the Meyniel graphs meet the definition of being a perfect graph, that the clique number equals the chromatic number in every induced su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Independent Set (graph Theory)
In graph theory, an independent set, stable set, coclique or anticlique is a set of vertices in a graph, no two of which are adjacent. That is, it is a set S of vertices such that for every two vertices in S, there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in S. A set is independent if and only if it is a clique in the graph's complement. The size of an independent set is the number of vertices it contains. Independent sets have also been called "internally stable sets", of which "stable set" is a shortening. A maximal independent set is an independent set that is not a proper subset of any other independent set. A maximum independent set is an independent set of largest possible size for a given graph G. This size is called the independence number of ''G'' and is usually denoted by \alpha(G). The optimization problem of finding such a set is called the maximum independent set problem. It is a strongly NP-hard problem. As such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

NP-hard
In computational complexity theory, NP-hardness ( non-deterministic polynomial-time hardness) is the defining property of a class of problems that are informally "at least as hard as the hardest problems in NP". A simple example of an NP-hard problem is the subset sum problem. A more precise specification is: a problem ''H'' is NP-hard when every problem ''L'' in NP can be reduced in polynomial time to ''H''; that is, assuming a solution for ''H'' takes 1 unit time, ''H''s solution can be used to solve ''L'' in polynomial time. As a consequence, finding a polynomial time algorithm to solve any NP-hard problem would give polynomial time algorithms for all the problems in NP. As it is suspected that P≠NP, it is unlikely that such an algorithm exists. It is suspected that there are no polynomial-time algorithms for NP-hard problems, but that has not been proven. Moreover, the class P, in which all problems can be solved in polynomial time, is contained in the NP class. Defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial Time
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is generally expresse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

House Graph
A house is a single-unit residential building. It may range in complexity from a rudimentary hut to a complex structure of wood, masonry, concrete or other material, outfitted with plumbing, electrical, and heating, ventilation, and air conditioning systems.Schoenauer, Norbert (2000). ''6,000 Years of Housing'' (rev. ed.) (New York: W.W. Norton & Company). Houses use a range of different roofing systems to keep precipitation such as rain from getting into the dwelling space. Houses may have doors or locks to secure the dwelling space and protect its inhabitants and contents from burglars or other trespassers. Most conventional modern houses in Western cultures will contain one or more bedrooms and bathrooms, a kitchen or cooking area, and a living room. A house may have a separate dining room, or the eating area may be integrated into another room. Some large houses in North America have a recreation room. In traditional agriculture-oriented societies, domestic animals such as c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Line Perfect Graph
In graph theory, a line perfect graph is a graph whose line graph is a perfect graph. Equivalently, these are the graphs in which every odd-length simple cycle is a triangle. A graph is line perfect if and only if each of its biconnected components is a bipartite graph, the complete graph , or a triangular book . Because these three types of biconnected component are all perfect graphs themselves, every line perfect graph is itself perfect. By similar reasoning, every line perfect graph is a parity graph, a Meyniel graph, and a perfectly orderable graph. Line perfect graphs generalize the bipartite graphs, and share with them the properties that the maximum matching and minimum vertex cover have the same size, and that the chromatic index equals the maximum degree. See also *Strangulated graph, a graph in which every peripheral cycle is a triangle References {{reflist, refs= {{citation , last = de Werra , first = D. , doi = 10.1007/BF01609025 , issue = 2 , journa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bipartite Graph
In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets U and V, that is every edge connects a vertex in U to one in V. Vertex sets U and V are usually called the ''parts'' of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles. The two sets U and V may be thought of as a coloring of the graph with two colors: if one colors all nodes in U blue, and all nodes in V red, each edge has endpoints of differing colors, as is required in the graph coloring problem.. In contrast, such a coloring is impossible in the case of a non-bipartite graph, such as a triangle: after one node is colored blue and another red, the third vertex of the triangle is connected to vertices of both colors, preventing it from being assigned either color. One often writes G=(U,V,E) to denote a bipartite graph whose partition has the parts U and V, with E denoting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Distance-hereditary Graph
In graph theory, a branch of discrete mathematics, a distance-hereditary graph (also called a completely separable graph) is a graph in which the distances in any connected induced subgraph are the same as they are in the original graph. Thus, any induced subgraph inherits the distances of the larger graph. Distance-hereditary graphs were named and first studied by , although an equivalent class of graphs was already shown to be perfect in 1970 by Olaru and Sachs. It has been known for some time that the distance-hereditary graphs constitute an intersection class of graphs, but no intersection model was known until one was given by . Definition and characterization The original definition of a distance-hereditary graph is a graph such that, if any two vertices and belong to a connected induced subgraph of , then some shortest path connecting and in must be a subgraph of , so that the distance between and in is the same as the distance in . Distance-hereditary graphs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Interval Graph
In graph theory, an interval graph is an undirected graph formed from a set of intervals on the real line, with a vertex for each interval and an edge between vertices whose intervals intersect. It is the intersection graph of the intervals. Interval graphs are chordal graphs and perfect graphs. They can be recognized in linear time, and an optimal graph coloring or maximum clique in these graphs can be found in linear time. The interval graphs include all proper interval graphs, graphs defined in the same way from a set of unit intervals. These graphs have been used to model food webs, and to study scheduling problems in which one must select a subset of tasks to be performed at non-overlapping times. Other applications include assembling contiguous subsequences in DNA mapping, and temporal reasoning. Definition An interval graph is an undirected graph formed from a family of intervals :S_i,\quad i=0,1,2,\dots by creating one vertex for each interval , and connecting two ver ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parity Graph
In graph theory, a parity graph is a graph in which every two induced paths between the same two vertices have the same parity: either both paths have odd length, or both have even length.Parity graphs
Information System on Graph Classes and their Inclusions, retrieved 2016-09-25.
This class of graphs was named and first studied by ..


Related classes of graphs

Parity graphs include the s, in which every two induced paths between the same two vertices have the same length. They also include the bipartite graphs, which may be charact ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chordal Graph
In the mathematical area of graph theory, a chordal graph is one in which all cycles of four or more vertices have a ''chord'', which is an edge that is not part of the cycle but connects two vertices of the cycle. Equivalently, every induced cycle in the graph should have exactly three vertices. The chordal graphs may also be characterized as the graphs that have perfect elimination orderings, as the graphs in which each minimal separator is a clique, and as the intersection graphs of subtrees of a tree. They are sometimes also called rigid circuit graphs. or triangulated graphs.. Chordal graphs are a subset of the perfect graphs. They may be recognized in linear time, and several problems that are hard on other classes of graphs such as graph coloring may be solved in polynomial time when the input is chordal. The treewidth of an arbitrary graph may be characterized by the size of the cliques in the chordal graphs that contain it. Perfect elimination and efficient recognit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Combinatorial Theory
The ''Journal of Combinatorial Theory'', Series A and Series B, are mathematical journals specializing in combinatorics and related areas. They are published by Elsevier. ''Series A'' is concerned primarily with structures, designs, and applications of combinatorics. ''Series B'' is concerned primarily with graph and matroid theory. The two series are two of the leading journals in the field and are widely known as ''JCTA'' and ''JCTB''. The journal was founded in 1966 by Frank Harary and Gian-Carlo Rota.They are acknowledged on the journals' title pages and Web sites. SeEditorial board of JCTAEditorial board of JCTB
Originally there was only one journal, which was split into two parts in 1971 as the field grew rapidly. An electronic,
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]