HOME
*





Metacompact
In the mathematical field of general topology, a topological space is said to be metacompact if every open cover has a point-finite open refinement. That is, given any open cover of the topological space, there is a refinement that is again an open cover with the property that every point is contained only in finitely many sets of the refining cover. A space is countably metacompact if every countable open cover has a point-finite open refinement. Properties The following can be said about metacompactness in relation to other properties of topological spaces: * Every paracompact space is metacompact. This implies that every compact space is metacompact, and every metric space is metacompact. The converse does not hold: a counter-example is the Dieudonné plank. * Every metacompact space is orthocompact. * Every metacompact normal space is a shrinking space * The product of a compact space and a metacompact space is metacompact. This follows from the tube lemma. * An easy exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paracompact Space
In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by . Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff. Every closed subspace of a paracompact space is paracompact. While compact subsets of Hausdorff spaces are always closed, this is not true for paracompact subsets. A space such that every subspace of it is a paracompact space is called hereditarily paracompact. This is equivalent to requiring that every open subspace be paracompact. Tychonoff's theorem (which states that the product of any collection of compact topological spaces is compact) does not generalize to paracompact spaces in that the product of paracompact spaces need not be paracompact. Howeve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paracompact Space
In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by . Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff. Every closed subspace of a paracompact space is paracompact. While compact subsets of Hausdorff spaces are always closed, this is not true for paracompact subsets. A space such that every subspace of it is a paracompact space is called hereditarily paracompact. This is equivalent to requiring that every open subspace be paracompact. Tychonoff's theorem (which states that the product of any collection of compact topological spaces is compact) does not generalize to paracompact spaces in that the product of paracompact spaces need not be paracompact. Howeve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudocompact
In mathematics, in the field of topology, a topological space is said to be pseudocompact if its image under any continuous function to R is bounded. Many authors include the requirement that the space be completely regular in the definition of pseudocompactness. Pseudocompact spaces were defined by Edwin Hewitt in 1948. Properties related to pseudocompactness * For a Tychonoff space ''X'' to be pseudocompact requires that every locally finite collection of non-empty open sets of ''X'' be finite. There are many equivalent conditions for pseudocompactness (sometimes some separation axiom should be assumed); a large number of them are quoted in Stephenson 2003. Some historical remarks about earlier results can be found in Engelking 1989, p. 211. *Every countably compact space is pseudocompact. For normal Hausdorff spaces the converse is true. *As a consequence of the above result, every sequentially compact space is pseudocompact. The converse is true for metric spaces. As seq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pseudocompact Space
In mathematics, in the field of topology, a topological space is said to be pseudocompact if its image under any continuous function to R is bounded. Many authors include the requirement that the space be completely regular in the definition of pseudocompactness. Pseudocompact spaces were defined by Edwin Hewitt in 1948. Properties related to pseudocompactness * For a Tychonoff space ''X'' to be pseudocompact requires that every locally finite collection of non-empty open sets of ''X'' be finite. There are many equivalent conditions for pseudocompactness (sometimes some separation axiom should be assumed); a large number of them are quoted in Stephenson 2003. Some historical remarks about earlier results can be found in Engelking 1989, p. 211. *Every countably compact space is pseudocompact. For normal Hausdorff spaces the converse is true. *As a consequence of the above result, every sequentially compact space is pseudocompact. The converse is true for metric spaces. As seq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Point-finite
In mathematics, a collection  \mathcal of subsets of a topological space X is said to be point-finite if every point of X lies in only finitely many members of \mathcal.. A topological space in which every open cover admits a point-finite open refinement (topology), refinement is called metacompact space, metacompact. Every locally finite collection of subsets of a topological space is also point-finite. A topological space in which every open cover admits a locally finite open refinement is called paracompact space, paracompact. Every paracompact space is therefore metacompact. References

General topology {{topology-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mesocompact Space
In mathematics, in the field of general topology, a topological space is said to be mesocompact if every open cover has a ''compact-finite'' open refinement. That is, given any open cover, we can find an open refinement with the property that every compact set meets only finitely many members of the refinement.Pearl, p23 The following facts are true about mesocompactness: * Every compact space, and more generally every paracompact space is mesocompact. This follows from the fact that any locally finite cover is automatically compact-finite. * Every mesocompact space is metacompact, and hence also orthocompact In mathematics, in the field of general topology, a topological space is said to be orthocompact if every open cover has an interior-preserving open refinement. That is, given an open cover of the topological space, there is a refinement that is .... This follows from the fact that points are compact, and hence any compact-finite cover is automatically point finite. Note ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orthocompact
In mathematics, in the field of general topology, a topological space is said to be orthocompact if every open cover has an interior-preserving open refinement. That is, given an open cover of the topological space, there is a refinement that is also an open cover, with the further property that at any point, the intersection of all open sets in the refinement containing that point is also open. If the number of open sets containing the point is finite, then their intersection is clearly open. That is, every point-finite open cover is interior preserving. Hence, we have the following: every metacompact space, and in particular, every paracompact space, is orthocompact. Useful theorems: * Orthocompactness is a topological invariant; that is, it is preserved by homeomorphisms. * Every closed subspace of an orthocompact space is orthocompact. * A topological space ''X'' is orthocompact if and only if every open cover of ''X'' by basic open subsets of ''X'' has an interior-preservin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Moore Plane
In mathematics, the Moore plane, also sometimes called Niemytzki plane (or Nemytskii plane, Nemytskii's tangent disk topology), is a topological space. It is a completely regular Hausdorff space (also called Tychonoff space) that is not normal. It is named after Robert Lee Moore and Viktor Vladimirovich Nemytskii. Definition If \Gamma is the (closed) upper half-plane \Gamma = \, then a topology may be defined on \Gamma by taking a local basis \mathcal(p,q) as follows: *Elements of the local basis at points (x,y) with y>0 are the open discs in the plane which are small enough to lie within \Gamma. *Elements of the local basis at points p = (x,0) are sets \\cup A where ''A'' is an open disc in the upper half-plane which is tangent to the ''x'' axis at ''p''. That is, the local basis is given by :\mathcal(p,q) = \begin \, & \mbox q > 0; \\ \, & \mbox q = 0. \end Thus the subspace topology inherited by \Gamma\backslash \ is the same as the subspace topology inherited from the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Glossary Of Topology
This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology. All spaces in this glossary are assumed to be topological spaces unless stated otherwise. A ;Absolutely closed: See ''H-closed'' ;Accessible: See T_1. ;Accumulation point: See limit point. ;Alexandrov topology: The topology of a space ''X'' is an Alexandrov topology (or is finitely generated) if arbitrary intersections of open sets in ''X'' are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the upper sets of a poset. ;Almost discrete: A space is almost discrete if every open set is closed (hence clopen). The almost discrete spaces are precisely the finitely generated zero-dimensional ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dieudonné Plank
In mathematics, the Dieudonné plank is a specific topological space introduced by . It is an example of a metacompact space that is not paracompact In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by . Every compact space is paracompact. Every paracompact Hausdorff space is normal, .... References * * Topology {{topology-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Refinement (topology)
In mathematics, and more particularly in set theory, a cover (or covering) of a set X is a collection of subsets of X whose union is all of X. More formally, if C = \lbrace U_\alpha : \alpha \in A \rbrace is an indexed family of subsets U_\alpha\subset X, then C is a cover of X if \bigcup_U_ = X. Thus the collection \lbrace U_\alpha : \alpha \in A \rbrace is a cover of X if each element of X belongs to at least one of the subsets U_. Cover in topology Covers are commonly used in the context of topology. If the set X is a topological space, then a ''cover'' C of X is a collection of subsets \_ of X whose union is the whole space X. In this case we say that C ''covers'' X, or that the sets U_\alpha ''cover'' X. Also, if Y is a (topological) subspace of X, then a ''cover'' of Y is a collection of subsets C=\_ of X whose union contains Y, i.e., C is a cover of Y if :Y \subseteq \bigcup_U_. That is, we may cover Y with either open sets in Y itself, or cover Y by open sets in the p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Open Cover
In mathematics, and more particularly in set theory, a cover (or covering) of a set X is a collection of subsets of X whose union is all of X. More formally, if C = \lbrace U_\alpha : \alpha \in A \rbrace is an indexed family of subsets U_\alpha\subset X, then C is a cover of X if \bigcup_U_ = X. Thus the collection \lbrace U_\alpha : \alpha \in A \rbrace is a cover of X if each element of X belongs to at least one of the subsets U_. Cover in topology Covers are commonly used in the context of topology. If the set X is a topological space, then a ''cover'' C of X is a collection of subsets \_ of X whose union is the whole space X. In this case we say that C ''covers'' X, or that the sets U_\alpha ''cover'' X. Also, if Y is a (topological) subspace of X, then a ''cover'' of Y is a collection of subsets C=\_ of X whose union contains Y, i.e., C is a cover of Y if :Y \subseteq \bigcup_U_. That is, we may cover Y with either open sets in Y itself, or cover Y by open sets in the p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]