HOME
*





Menaechmus
:''There is also a Menaechmus in Plautus' play, ''The Menaechmi''.'' Menaechmus ( el, Μέναιχμος, 380–320 BC) was an ancient Greek mathematician, geometer and philosopher born in Alopeconnesus or Prokonnesos in the Thracian Chersonese, who was known for his friendship with the renowned philosopher Plato and for his apparent discovery of conic sections and his solution to the then-long-standing problem of doubling the cube using the parabola and hyperbola. Life and work Menaechmus is remembered by mathematicians for his discovery of the conic sections and his solution to the problem of doubling the cube. Menaechmus likely discovered the conic sections, that is, the ellipse, the parabola, and the hyperbola, as a by-product of his search for the solution to the Delian problem. Menaechmus knew that in a parabola y2 = ''L''x, where ''L'' is a constant called the ''latus rectum'', although he was not aware of the fact that any equation in two unknowns determines a curve. He ap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


The Menaechmi
''Menaechmi'', a Latin-language play, is often considered Plautus' greatest play. The title is sometimes translated as ''The Brothers Menaechmus'' or ''The Two Menaechmuses''. The ''Menaechmi'' is a comedy about mistaken identity, involving a set of twins, Menaechmus of Epidamnus and Menaechmus of Syracuse. It incorporates various Roman stock characters including the parasite, the comic courtesan, the comic servant, the domineering wife, the doddering father-in-law and the quack doctor. As with most of Plautus' plays, much of the dialogue was sung. The play is set in a street in Epidamnus, a city on the coast of what is now Albania. Facing the audience are two houses, that of Menaechmus I and that of Erotium, the prostitute he is courting. Plot Prologue: Moschus has twin sons, Menaechmus and Sosicles. Moschus decides to take only one of the twins, Menaechmus, with him on a business trip, while the twins are still young. During the trip, Menaechmus is abducted and adopted by a bu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Plautus
Titus Maccius Plautus (; c. 254 – 184 BC), commonly known as Plautus, was a Roman playwright of the Old Latin period. His comedies are the earliest Latin literary works to have survived in their entirety. He wrote Palliata comoedia, the genre devised by the innovator of Latin literature, Livius Andronicus. The word Plautine refers to both Plautus's own works and works similar to or influenced by his. Biography Not much is known about Titus Maccius Plautus's early life. It is believed that he was born in Sarsina, a small town in Emilia Romagna in northern Italy, around 254 BC.''The Concise Oxford Companion to Classical Literature'' (1996) Ed. M.C. Howatson and Ian Chilvers, Oxford University Press, Oxford Reference Online According to Morris Marples, Plautus worked as a stage-carpenter or scene-shifter in his early years. It is from this work, perhaps, that his love of the theater originated. His acting talent was eventually discovered; and he adopted the names "Maccius" (a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Doubling The Cube
Doubling the cube, also known as the Delian problem, is an ancient geometric problem. Given the edge of a cube, the problem requires the construction of the edge of a second cube whose volume is double that of the first. As with the related problems of squaring the circle and trisecting the angle, doubling the cube is now known to be impossible to construct by using only a compass and straightedge, but even in ancient times solutions were known that employed other tools. The Egyptians, Indians, and particularly the Greeks were aware of the problem and made many futile attempts at solving what they saw as an obstinate but soluble problem. However, the nonexistence of a compass-and-straightedge solution was finally proven by Pierre Wantzel in 1837. In algebraic terms, doubling a unit cube requires the construction of a line segment of length , where ; in other words, , the cube root of two. This is because a cube of side length 1 has a volume of , and a cube of twice that volu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dinostratus
Dinostratus ( el, Δεινόστρατος; c. 390 – c. 320 BCE) was a Greece, Greek mathematician and geometer, and the brother of Menaechmus. He is known for using the quadratrix to solve the problem of squaring the circle. Life and work Dinostratus' chief contribution to mathematics was his solution to the problem of squaring the circle. To solve this problem, Dinostratus made use of the trisectrix of Hippias, for which he proved a special property (Dinostratus' theorem) that allowed him the squaring of the circle. Due to his work the trisectrix later became known as the quadratrix of Dinostratus as well. Although Dinostratus solved the problem of squaring the circle, he did not do so using Compass and straightedge constructions, ruler and compass alone, and so it was clear to the Greeks that his solution violated the foundational principles of their mathematics. Over 2,200 years later Ferdinand von Lindemann would prove that it is impossible to square a circle using straigh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Duplication Of The Cube
Doubling the cube, also known as the Delian problem, is an ancient geometric problem. Given the edge of a cube, the problem requires the construction of the edge of a second cube whose volume is double that of the first. As with the related problems of squaring the circle and trisecting the angle, doubling the cube is now known to be impossible to construct by using only a compass and straightedge, but even in ancient times solutions were known that employed other tools. The Egyptians, Indians, and particularly the Greeks were aware of the problem and made many futile attempts at solving what they saw as an obstinate but soluble problem. However, the nonexistence of a compass-and-straightedge solution was finally proven by Pierre Wantzel in 1837. In algebraic terms, doubling a unit cube requires the construction of a line segment of length , where ; in other words, , the cube root of two. This is because a cube of side length 1 has a volume of , and a cube of twice that volume ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Delian Problem
Doubling the cube, also known as the Delian problem, is an ancient geometric problem. Given the edge of a cube, the problem requires the construction of the edge of a second cube whose volume is double that of the first. As with the related problems of squaring the circle and trisecting the angle, doubling the cube is now known to be impossible to construct by using only a compass and straightedge, but even in ancient times solutions were known that employed other tools. The Egyptians, Indians, and particularly the Greeks were aware of the problem and made many futile attempts at solving what they saw as an obstinate but soluble problem. However, the nonexistence of a compass-and-straightedge solution was finally proven by Pierre Wantzel in 1837. In algebraic terms, doubling a unit cube requires the construction of a line segment of length , where ; in other words, , the cube root of two. This is because a cube of side length 1 has a volume of , and a cube of twice that volume ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conic Sections
In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though historically it was sometimes called a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties. The conic sections in the Euclidean plane have various distinguishing properties, many of which can be used as alternative definitions. One such property defines a non-circular conic to be the set of those points whose distances to some particular point, called a ''focus'', and some particular line, called a ''directrix'', are in a fixed ratio, called the ''eccentricity''. The type of conic is determined by the value of the eccentricity. In analytic geometry, a conic may be defined as a plane algebraic curve of deg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbola
In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse. A circle is a special case of an ellipse.) If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola. Hyperbolas arise in many ways: * as the curve representing the reciprocal function y(x) = 1/x in the Cartesian plane, * as the path followed by the shadow of the tip of a sundial, * as the shape of an open orbit (as distinct from a closed elliptical orbit), such as the orbit of a s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Latus Rectum
In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though historically it was sometimes called a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties. The conic sections in the Euclidean plane have various distinguishing properties, many of which can be used as alternative definitions. One such property defines a non-circular conic to be the set of those points whose distances to some particular point, called a ''focus'', and some particular line, called a ''directrix'', are in a fixed ratio, called the ''eccentricity''. The type of conic is determined by the value of the eccentricity. In analytic geometry, a conic may be defined as a plane algebraic curve of deg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conic Section
In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though historically it was sometimes called a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties. The conic sections in the Euclidean plane have various distinguishing properties, many of which can be used as alternative definitions. One such property defines a non-circular conic to be the set of those points whose distances to some particular point, called a ''focus'', and some particular line, called a ''directrix'', are in a fixed ratio, called the ''eccentricity''. The type of conic is determined by the value of the eccentricity. In analytic geometry, a conic may be defined as a plane algebraic curve of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Proclus
Proclus Lycius (; 8 February 412 – 17 April 485), called Proclus the Successor ( grc-gre, Πρόκλος ὁ Διάδοχος, ''Próklos ho Diádokhos''), was a Greek Neoplatonist philosopher, one of the last major classical philosophers of late antiquity. He set forth one of the most elaborate and fully developed systems of Neoplatonism and, through later interpreters and translators, exerted an influence on Byzantine philosophy, Early Islamic philosophy, and Scholastic philosophy. Biography The primary source for the life of Proclus is the eulogy ''Proclus, or On Happiness'' that was written for him upon his death by his successor, Marinus, Marinus' biography set out to prove that Proclus reached the peak of virtue and attained eudaimonia. There are also a few details about the time in which he lived in the similarly structured ''Life of Isidore'' written by the philosopher Damascius in the following century. According to Marinus, Proclus was born in 412 AD in Cons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parabola
In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves. One description of a parabola involves a point (the focus) and a line (the directrix). The focus does not lie on the directrix. The parabola is the locus of points in that plane that are equidistant from both the directrix and the focus. Another description of a parabola is as a conic section, created from the intersection of a right circular conical surface and a plane parallel to another plane that is tangential to the conical surface. The line perpendicular to the directrix and passing through the focus (that is, the line that splits the parabola through the middle) is called the "axis of symmetry". The point where the parabola intersects its axis of symmetry is called the "vertex" and is the point where the parabola is most sharply curved. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]