HOME
*



picture info

Mealy
In the theory of computation, a Mealy machine is a finite-state machine whose output values are determined both by its current state and the current inputs. This is in contrast to a Moore machine, whose output values are determined solely by its current state. A Mealy machine is a deterministic finite-state transducer: for each state and input, at most one transition is possible. History The Mealy machine is named after George H. Mealy, who presented the concept in a 1955 paper, "A Method for Synthesizing Sequential Circuits". Formal definition A Mealy machine is a 6-tuple (S, S_0, \Sigma, \Lambda, T, G) consisting of the following: * a finite set of states S * a start state (also called initial state) S_0 which is an element of S * a finite set called the input alphabet \Sigma * a finite set called the output alphabet \Lambda * a transition function T : S \times \Sigma \rightarrow S mapping pairs of a state and an input symbol to the corresponding next state. * an output funct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mealy
In the theory of computation, a Mealy machine is a finite-state machine whose output values are determined both by its current state and the current inputs. This is in contrast to a Moore machine, whose output values are determined solely by its current state. A Mealy machine is a deterministic finite-state transducer: for each state and input, at most one transition is possible. History The Mealy machine is named after George H. Mealy, who presented the concept in a 1955 paper, "A Method for Synthesizing Sequential Circuits". Formal definition A Mealy machine is a 6-tuple (S, S_0, \Sigma, \Lambda, T, G) consisting of the following: * a finite set of states S * a start state (also called initial state) S_0 which is an element of S * a finite set called the input alphabet \Sigma * a finite set called the output alphabet \Lambda * a transition function T : S \times \Sigma \rightarrow S mapping pairs of a state and an input symbol to the corresponding next state. * an output funct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite Automata
A finite-state machine (FSM) or finite-state automaton (FSA, plural: ''automata''), finite automaton, or simply a state machine, is a mathematical model of computation. It is an abstract machine that can be in exactly one of a finite number of '' states'' at any given time. The FSM can change from one state to another in response to some inputs; the change from one state to another is called a ''transition''. An FSM is defined by a list of its states, its initial state, and the inputs that trigger each transition. Finite-state machines are of two types— deterministic finite-state machines and non-deterministic finite-state machines. A deterministic finite-state machine can be constructed equivalent to any non-deterministic one. The behavior of state machines can be observed in many devices in modern society that perform a predetermined sequence of actions depending on a sequence of events with which they are presented. Simple examples are vending machines, which dispense p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite-state Machine
A finite-state machine (FSM) or finite-state automaton (FSA, plural: ''automata''), finite automaton, or simply a state machine, is a mathematical model of computation. It is an abstract machine that can be in exactly one of a finite number of '' states'' at any given time. The FSM can change from one state to another in response to some inputs; the change from one state to another is called a ''transition''. An FSM is defined by a list of its states, its initial state, and the inputs that trigger each transition. Finite-state machines are of two types— deterministic finite-state machines and non-deterministic finite-state machines. A deterministic finite-state machine can be constructed equivalent to any non-deterministic one. The behavior of state machines can be observed in many devices in modern society that perform a predetermined sequence of actions depending on a sequence of events with which they are presented. Simple examples are vending machines, which dispense p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moore Machine
In the theory of computation, a Moore machine is a finite-state machine whose current output values are determined only by its current state. This is in contrast to a Mealy machine, whose output values are determined both by its current state and by the values of its inputs. Like other finite state machines, in Moore machines, the input typicallinfluences the next state Thus the input may indirectly influence subsequent outputs, but not the current or immediate output. The Moore machine is named after Edward F. Moore, who presented the concept in a 1956 paper, “ Gedanken-experiments on Sequential Machines.” Formal definition A Moore machine can be defined as a 6-tuple (Q, q_0, \Sigma, O, \delta, G) consisting of the following: * A finite set of states Q * A start state (also called initial state) q_0 which is an element of Q * A finite set called the input alphabet \Sigma * A finite set called the output alphabet O * A transition function \delta : Q \times \Sigma \righ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

State Diagram
A state diagram is a type of diagram used in computer science and related fields to describe the behavior of systems. State diagrams require that the system described is composed of a finite number of states; sometimes, this is indeed the case, while at other times this is a reasonable abstraction. Many forms of state diagrams exist, which differ slightly and have different semantics. Overview State diagrams are used to give an abstract description of the behavior of a system. This behavior is analyzed and represented by a series of events that can occur in one or more possible states. Hereby "each diagram usually represents objects of a single class and track the different states of its objects through the system". State diagrams can be used to graphically represent finite-state machines (also called finite automata). This was introduced by Claude Shannon and Warren Weaver in their 1949 book ''The Mathematical Theory of Communication''. Another source is Taylor Booth in hi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithmic State Machine
The algorithmic state machine (ASM) method is a method for designing finite state machines (FSMs) originally developed by Thomas E. Osborne at the University of California, Berkeley (UCB) since 1960, introduced to and implemented at Hewlett-Packard in 1968, formalized and expanded since 1967 and written about by Christopher R. Clare since 1970. It is used to represent diagrams of digital integrated circuits. The ASM diagram is like a state diagram but more structured and, thus, easier to understand. An ASM chart is a method of describing the sequential operations of a digital system. ASM method The ASM method is composed of the following steps: :''1''. Create an algorithm, using ''pseudocode'', to describe the desired operation of the device. :''2''. Convert the pseudocode into an ''ASM chart''. :''3''. Design the ''datapath'' based on the ASM chart. :''4''. Create a ''detailed ASM chart'' based on the datapath. :''5''. Design the ''control logic'' based on the detailed ASM ch ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Richards Controller
The Richards controller is a method of implementing a finite state machine using simple integrated circuits and combinational logic. The method was named after its inventor, Charles L. Richards. It allows for easier design of complex finite state machines than the traditional techniques of state diagrams, state transition tables and Boolean algebra offer. Using Richards's technique, it becomes easier to implement finite state machines with hundreds or even thousands of states. History The Richards controller was developed because of the need for an easier method of designing finite state machines than using the traditional method of state diagrams, state transition tables, and logic minimization. At the time, many of the computer based logic minimization tools that we have today did not exist. Hence, logic minimization was for the most part limited to the use of Karnaugh maps and DeMorgan's law. Because of this, Charles L. Richards invented a method of implementing a finite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite-state Transducer
A finite-state transducer (FST) is a finite-state machine with two memory ''tapes'', following the terminology for Turing machines: an input tape and an output tape. This contrasts with an ordinary finite-state automaton, which has a single tape. An FST is a type of finite-state automaton (FSA) that maps between two sets of symbols. An FST is more general than an FSA. An FSA defines a formal language by defining a set of accepted strings, while an FST defines relations between sets of strings. An FST will read a set of strings on the input tape and generates a set of relations on the output tape. An FST can be thought of as a translator or relater between strings in a set. In morphological parsing, an example would be inputting a string of letters into the FST, the FST would then output a string of morphemes. Overview An automaton can be said to ''recognize'' a string if we view the content of its tape as input. In other words, the automaton computes a function that maps ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Synchronous Circuit
In digital electronics, a synchronous circuit is a digital circuit in which the changes in the state of memory elements are synchronized by a clock signal. In a sequential digital logic circuit, data are stored in memory devices called flip-flops or latches. The output of a flip-flop is constant until a pulse is applied to its "clock" input, upon which the input of the flip-flop is latched into its output. In a synchronous logic circuit, an electronic oscillator called the ''clock'' generates a string (sequence) of pulses, the "clock signal". This clock signal is applied to every storage element, so in an ideal synchronous circuit, every change in the logical levels of its storage components is simultaneous. Ideally, the input to each storage element has reached its final value before the next clock occurs, so the behaviour of the whole circuit can be predicted exactly. Practically, some delay is required for each logical operation, resulting in a maximum speed limitation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


International Journal Of Algebra And Computation
The ''International Journal of Algebra and Computation'' is published by World Scientific, and contains articles on general mathematics, as well as: * Combinatorial group theory and semigroup theory * Universal algebra * Algorithmic and computational problems in algebra * Theory of automata * Formal language theory * Theory of computation * Theoretical computer science According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 0.719. Abstracting and indexing The journal is indexed in: * ISI Alerting Services * CompuMath Citation Index * Science Citation Index * Current Contents/Physical, Chemical and Earth Sciences * Mathematical Reviews * INSPEC * Zentralblatt MATH zbMATH Open, formerly Zentralblatt MATH, is a major reviewing service providing reviews and abstracts for articles in pure and applied mathematics, produced by the Berlin office of FIZ Karlsruhe – Leibniz Institute for Information Infrastruct ... * Computer Abstracts Mathematics j ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]