HOME
*





Maximal Arc
A Maximal arc in a finite projective plane is a largest possible (''k'',''d'')-arc in that projective plane. If the finite projective plane has order ''q'' (there are ''q''+1 points on any line), then for a maximal arc, ''k'', the number of points of the arc, is the maximum possible (= ''qd'' + ''d'' - ''q'') with the property that no ''d''+1 points of the arc lie on the same line. Definition Let \pi be a finite projective plane of order ''q'' (not necessarily desarguesian). Maximal arcs of ''degree'' ''d'' ( 2 ≤ ''d'' ≤ ''q''- 1) are (''k'',''d'')- arcs in \pi, where ''k'' is maximal with respect to the parameter ''d'', in other words, ''k'' = ''qd'' + ''d'' - ''q''. Equivalently, one can define maximal arcs of degree ''d'' in \pi as non-empty sets of points ''K'' such that every line intersects the set either in 0 or ''d'' points. Some authors permit the degree of a maximal arc to be 1, ''q'' or even ''q''+ 1. Letting ''K'' be a maximal (''k'', ''d'')-arc in a projective p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Plane
In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines (namely, parallel lines) that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus ''any'' two distinct lines in a projective plane intersect at exactly one point. Renaissance artists, in developing the techniques of drawing in perspective, laid the groundwork for this mathematical topic. The archetypical example is the real projective plane, also known as the extended Euclidean plane. This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by , RP2, or P2(R), among other notations. There are many other projective planes, both infinite, such as the complex projective plane, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arc (projective Geometry)
An (''simple'') arc in finite projective geometry is a set of points which satisfies, in an intuitive way, a feature of ''curved'' figures in continuous geometries. Loosely speaking, they are sets of points that are far from "line-like" in a plane or far from "plane-like" in a three-dimensional space. In this finite setting it is typical to include the number of points in the set in the name, so these simple arcs are called -arcs. An important generalization of the -arc concept, also referred to as arcs in the literature, are the ()-arcs. -arcs in a projective plane In a finite projective plane (not necessarily Desarguesian) a set of points such that no three points of are collinear (on a line) is called a . If the plane has order then , however the maximum value of can only be achieved if is even. In a plane of order , a -arc is called an oval and, if is even, a -arc is called a hyperoval. Every conic in the Desarguesian projective plane PG(2,), i.e., the set of zeros ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Desargues' Theorem
In projective geometry, Desargues's theorem, named after Girard Desargues, states: :Two triangles are in perspective ''axially'' if and only if they are in perspective ''centrally''. Denote the three vertices of one triangle by and , and those of the other by and . ''Axial perspectivity'' means that lines and meet in a point, lines and meet in a second point, and lines and meet in a third point, and that these three points all lie on a common line called the ''axis of perspectivity''. ''Central perspectivity'' means that the three lines and are concurrent, at a point called the ''center of perspectivity''. This intersection theorem is true in the usual Euclidean plane but special care needs to be taken in exceptional cases, as when a pair of sides are parallel, so that their "point of intersection" recedes to infinity. Commonly, to remove these exceptions, mathematicians "complete" the Euclidean plane by adding points at infinity, following Jean-Victor Poncelet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Oval (projective Plane)
In projective geometry an oval is a point set in a plane that is defined by incidence properties. The standard examples are the nondegenerate conics. However, a conic is only defined in a pappian plane, whereas an oval may exist in any type of projective plane. In the literature, there are many criteria which imply that an oval is a conic, but there are many examples, both infinite and finite, of ovals in pappian planes which are not conics. As mentioned, in projective geometry an oval is defined by incidence properties, but in other areas, ovals may be defined to satisfy other criteria, for instance, in differential geometry by differentiability conditions in the real plane. The higher dimensional analog of an oval is an ovoid in a projective space. A generalization of the oval concept is an abstract oval, which is a structure that is not necessarily embedded in a projective plane. Indeed, there exist abstract ovals which can not lie in any projective plane. Definition of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Partial Geometry
An incidence structure C=(P,L,I) consists of points P, lines L, and flags I \subseteq P \times L where a point p is said to be incident with a line l if (p,l) \in I. It is a (finite) partial geometry if there are integers s,t,\alpha\geq 1 such that: * For any pair of distinct points p and q, there is at most one line incident with both of them. * Each line is incident with s+1 points. * Each point is incident with t+1 lines. * If a point p and a line l are not incident, there are exactly \alpha pairs (q,m)\in I, such that p is incident with m and q is incident with l. A partial geometry with these parameters is denoted by pg(s,t,\alpha). Properties * The number of points is given by \frac and the number of lines by \frac. * The point graph (also known as the collinearity graph) of a pg(s,t,\alpha) is a strongly regular graph: srg((s+1)\frac,s(t+1),s-1+t(\alpha-1),\alpha(t+1)). * Partial geometries are dual structures: the dual of a pg(s,t,\alpha) is simply a pg(t,s,\alpha). Speci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Combinatorial Theory
The ''Journal of Combinatorial Theory'', Series A and Series B, are mathematical journals specializing in combinatorics and related areas. They are published by Elsevier. ''Series A'' is concerned primarily with structures, designs, and applications of combinatorics. ''Series B'' is concerned primarily with graph and matroid theory. The two series are two of the leading journals in the field and are widely known as ''JCTA'' and ''JCTB''. The journal was founded in 1966 by Frank Harary and Gian-Carlo Rota.They are acknowledged on the journals' title pages and Web sites. SeEditorial board of JCTAEditorial board of JCTB
Originally there was only one journal, which was split into two parts in 1971 as the field grew rapidly. An electronic,
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Geometriae Dedicata
''Geometriae Dedicata'' is a mathematical journal, founded in 1972, concentrating on geometry and its relationship to topology, group theory and the theory of dynamical systems. It was created on the initiative of Hans Freudenthal in Utrecht, the Netherlands.. It is published by Springer Netherlands. The Editors-in-Chief An editor-in-chief (EIC), also known as lead editor or chief editor, is a publication's editorial leader who has final responsibility for its operations and policies. The highest-ranking editor of a publication may also be titled editor, managing ... are John R. Parker and Jean-Marc Schlenker.Journal website References External links Springer site Mathematics journals Springer Science+Business Media academic journals {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]