Manganin
Manganin is a trademarked name for an alloy of typically 84.2% copper, 12.1% manganese, and 3.7% nickel. It was first developed by Edward Weston in 1892, improving upon his Constantan (1887). Manganin foil and wire is used in the manufacture of resistors, particularly ammeter shunts, because of its virtually zero temperature coefficient of resistance value and long term stability. Several Manganin resistors served as the legal standard for the ohm in the United States from 1901 to 1990. Manganin wire is also used as an electrical conductor in cryogenic systems, minimizing heat transfer between points which need electrical connections. Manganin is also used in gauges for studies of high-pressure shock waves (such as those generated from the detonation of explosives) because it has low strain sensitivity but high hydrostatic pressure sensitivity. History In 1887 Edward Weston discovered that metals can have a negative temperature coefficient of resistance, inventing what ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Shunt (electrical)
In electronics, a shunt is a device that creates a low-resistance path for electric current, to allow it to pass around another point in the circuit.Rudolf F. Graf, ''Modern dictionary of Electronics'', Mc-Graw Hill, 1968 Library of Congress 68-13873 ''Shunt'' page 454. The origin of the term is in the verb 'to shunt' meaning to turn away or follow a different path. Defective device bypass One example is in miniature Christmas lights which are wired in series. When the filament burns out in one of the incandescent light bulbs, the full line voltage appears across the burnt out bulb. A shunt resistor, which has been connected in parallel across the filament before it burnt out, will then short out to bypass the burnt filament and allow the rest of the string to light. If too many lights burn out however, a shunt will also burn out, requiring the use of a multimeter to find the point of failure. Photovoltaics In photovoltaics, the term is widely used to describe an ''unwant ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Resistor
A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active elements, and terminate transmission lines, among other uses. High-power resistors that can dissipate many watts of electrical power as heat may be used as part of motor controls, in power distribution systems, or as test loads for generators. Fixed resistors have resistances that only change slightly with temperature, time or operating voltage. Variable resistors can be used to adjust circuit elements (such as a volume control or a lamp dimmer), or as sensing devices for heat, light, humidity, force, or chemical activity. Resistors are common elements of electrical networks and electronic circuits and are ubiquitous in electronic equipment. Practical resistors as discrete components can be composed of various compounds and forms. R ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Edward Weston (chemist)
Edward Weston (May 9, 1850 – August 20, 1936) was an English-born American chemist and engineer noted for his achievements in electroplating and his development of the electrochemical cell, named the Weston cell, for the voltage standard.History of Weston Aerospace , Weston – the Man (1850-1936) Weston was a competitor of in the early days of electricity generation and distribution.Edward Weston (1850-1936) . Corrosion Doctors Biography Born in[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Constantan
Constantan is a proprietary name for a copper–nickel alloy also known as Eureka, Advance, and Ferry. It usually consists of 55% copper and 45% nickel. Its main feature is the low thermal variation of its resistivity, which is constant over a wide range of temperatures. Other alloys with similarly low temperature coefficients are known, such as manganin (Cu 6%/ Mn 2%/ Ni %). History In 1887, Edward Weston discovered that metals can have a negative temperature coefficient of resistance, inventing what he called his "Alloy No. 2." It was produced in Germany where it was renamed "Konstantan". Constantan alloy Of all modern strain gauge alloys, constantan is the oldest, and still the most widely used. This situation reflects the fact that constantan has the best overall combination of properties needed for many strain gauge applications. This alloy has, for example, an adequately high strain sensitivity, or gauge factor, which is relatively insensitive to strain lev ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bushy House
Bushy House is a Grade II* listed former residence of King William IV and Queen Adelaide in Teddington, London, which Lord Halifax had constructed for his own enjoyment on the site of a previous house Upper Lodge, Bushy Park, between 1714 and 1715. It is part of the National Physical Laboratory and its upper two storeys overlook adjoining Bushy Park. The house and of surrounding Bushy Park land were taken as the site for the National Physical Laboratory (NPL) in 1900 after concerns about flooding of the previously proposed site in the Old Deer Park, Richmond; it opened as part of this important laboratory in 1902. The ground floor and basement levels of Bushy House were converted to laboratory space and Richard Glazebrook, the first director of NPL, and later directors, used part of the building as private accommodation. Bushy House contains laboratories, two small museums that mainly contain old scientific equipment, and rooms used for meetings and conferences. Histo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
List Of Named Alloys
This is a list of named alloys grouped alphabetically by base metal. Within these headings, the alloys are also grouped alphabetically. Some of the main alloying elements are optionally listed after the alloy names. Alloys by base metal Aluminium * AA-8000: used for electrical building wire in the U.S. per the National Electrical Code, replacing AA-1350. * Al–Li (2.45% lithium): aerospace applications, including the Space Shuttle * Alnico ( nickel, cobalt): used for permanent magnets * Aluminium–Scandium ( scandium) * Birmabright ( magnesium, manganese): used in car bodies, mainly used by Land Rover cars. * Duralumin ( copper) * Hiduminium or R.R. alloys (2% copper, iron, nickel): used in aircraft pistons * Hydronalium (up to 12% magnesium, 1% manganese): used in shipbuilding, resists seawater corrosion * Italma (3.5% magnesium, 0.3% manganese): formerly used to make coinage of the Italian lira * Magnalium (5-50% magnesium): used in airplane bodies, ladders ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fluid Statics
Fluid statics or hydrostatics is the branch of fluid mechanics that studies the condition of the equilibrium of a floating body and submerged body "fluids at hydrostatic equilibrium and the pressure in a fluid, or exerted by a fluid, on an immersed body". It encompasses the study of the conditions under which fluids are at rest in stable equilibrium as opposed to fluid dynamics, the study of fluids in motion. Hydrostatics is a subcategory of fluid statics, which is the study of all fluids, both compressible or incompressible, at rest. Hydrostatics is fundamental to hydraulics, the engineering of equipment for storing, transporting and using fluids. It is also relevant to geophysics and astrophysics (for example, in understanding plate tectonics and the anomalies of the Earth's gravitational field), to meteorology, to medicine (in the context of blood pressure), and many other fields. Hydrostatics offers physical explanations for many phenomena of everyday life, such as why a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Strain (materials Science)
In physics, deformation is the continuum mechanics transformation of a body from a ''reference'' configuration to a ''current'' configuration. A configuration is a set containing the positions of all particles of the body. A deformation can occur because of external loads, intrinsic activity (e.g. muscle contraction), body forces (such as gravity or electromagnetic forces), or changes in temperature, moisture content, or chemical reactions, etc. Strain is related to deformation in terms of ''relative'' displacement of particles in the body that excludes rigid-body motions. Different equivalent choices may be made for the expression of a strain field depending on whether it is defined with respect to the initial or the final configuration of the body and on whether the metric tensor or its dual is considered. In a continuous body, a deformation field results from a stress field due to applied forces or because of some changes in the temperature field of the body. The re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Explosive Material
An explosive (or explosive material) is a reactive substance that contains a great amount of potential energy that can produce an explosion if released suddenly, usually accompanied by the production of light, heat, sound, and pressure. An explosive charge is a measured quantity of explosive material, which may either be composed solely of one ingredient or be a mixture containing at least two substances. The potential energy stored in an explosive material may, for example, be * chemical energy, such as nitroglycerin or grain dust * pressurized gas, such as a gas cylinder, aerosol can, or BLEVE * nuclear energy, such as in the fissile isotopes uranium-235 and plutonium-239 Explosive materials may be categorized by the speed at which they expand. Materials that detonate (the front of the chemical reaction moves faster through the material than the speed of sound) are said to be "high explosives" and materials that deflagrate are said to be "low explosives". Explosives ma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Shock Waves
In physics, a shock wave (also spelled shockwave), or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a medium but is characterized by an abrupt, nearly discontinuous, change in pressure, temperature, and density of the medium. For the purpose of comparison, in supersonic flows, additional increased expansion may be achieved through an expansion fan, also known as a Prandtl–Meyer expansion fan. The accompanying expansion wave may approach and eventually collide and recombine with the shock wave, creating a process of destructive interference. The sonic boom associated with the passage of a supersonic aircraft is a type of sound wave produced by constructive interference. Unlike solitons (another kind of nonlinear wave), the energy and speed of a shock wave alone dissipates relatively quickly with distance. When a shock wave passes through ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
High Pressure
In science and engineering the study of high pressure examines its effects on materials and the design and construction of devices, such as a diamond anvil cell, which can create high pressure. By ''high pressure'' is usually meant pressures of thousands (kilobars) or millions (megabars) of times atmospheric pressure (about 1 bar or 100,000 Pa). History and overview Percy Williams Bridgman received a Nobel Prize in 1946 for advancing this area of physics by several magnitudes of pressure (400 MPa to 40,000 MPa). The list of founding fathers of this field includes also the names of Harry George Drickamer, Tracy Hall, Francis P. Bundy, Leonid F. Vereschagin, and Sergey M. Stishov. It was by applying high pressure as well as high temperature to carbon that man-made diamonds were first produced as well as many other interesting discoveries. Almost any material when subjected to high pressure will compact itself into a denser form, for example, quartz, also called silica or silicon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ohm (unit)
Ohm (symbol Ω) is a unit of electrical resistance named after Georg Ohm. Ohm or OHM may also refer to: People * Georg Ohm (1789–1854), German physicist and namesake of the term ''ohm'' * Germán Ohm (born 1936), Mexican boxer * Jörg Ohm (born 1944), former East German football player * Martin Ohm (1792–1872), German mathematician * Rebecca Ohm, United States Air Force officer and fighter pilot * Rune Ohm (born 1980), Danish handball player * Thorsten Ohm, CEO of VDM Publishing * Pawat Chittsawangdee, Thai actor, nicknamed Ohm Places Germany * Ohm (river), right tributary of the Lahn near Cölbe * Zwester Ohm, left tributary of the Lahn near Fronhausen Outer space * 24750 Ohm, an outer main belt asteroid * Ohm (crater) on the Moon Science and technology * Acoustic ohm, a unit of measurement of acoustic impedance * Ohm's law, law that relates electrical resistance, current, and voltage * OHM ( Observe. Hack. Make.), a 2013 outdoor hacker conference * OpenHistorica ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |