HOME
*





MISTY1
In cryptography, MISTY1 (or MISTY-1) is a block cipher designed in 1995 by Mitsuru Matsui and others for Mitsubishi Electric. MISTY1 is one of the selected algorithms in the European NESSIE project, and has been among the cryptographic techniques recommended for Japanese government use by CRYPTREC in 2003; however, it was dropped to "candidate" by CRYPTREC revision in 2013. However, it was successfully broken in 2015 by Yosuke Todo using integral cryptanalysis; this attack was improved in the same year by Achiya Bar-On. "MISTY" can stand for "Mitsubishi Improved Security Technology"; it is also the initials of the researchers involved in its development: Matsui Mitsuru, Ichikawa Tetsuya, Sorimachi Toru, Tokita Toshio, and Yamagishi Atsuhiro. MISTY1 is covered by patents, although the algorithm is freely available for academic (non-profit) use in RFC 2994, and there's a GPLed implementation by Hironobu Suzuki (used by, e.g. Scramdisk). Security MISTY1 is a Feistel network with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Feistel Network
In cryptography, a Feistel cipher (also known as Luby–Rackoff block cipher) is a symmetric structure used in the construction of block ciphers, named after the German-born physicist and cryptographer Horst Feistel, who did pioneering research while working for IBM; it is also commonly known as a Feistel network. A large proportion of block ciphers use the scheme, including the US Data Encryption Standard, the Soviet/Russian GOST and the more recent Blowfish and Twofish ciphers. In a Feistel cipher, encryption and decryption are very similar operations, and both consist of iteratively running a function called a "round function" a fixed number of times. History Many modern symmetric block ciphers are based on Feistel networks. Feistel networks were first seen commercially in IBM's Lucifer cipher, designed by Horst Feistel and Don Coppersmith in 1973. Feistel networks gained respectability when the U.S. Federal Government adopted the DES (a cipher based on Lucifer, with changes mad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CRYPTREC
CRYPTREC is the Cryptography Research and Evaluation Committees set up by the Japanese Government to evaluate and recommend cryptographic techniques for government and industrial use. It is comparable in many respects to the European Union's NESSIE project and to the Advanced Encryption Standard process run by National Institute of Standards and Technology in the U.S. Comparison with NESSIE There is some overlap, and some conflict, between the NESSIE selections and the CRYPTREC draft recommendations. Both efforts include some of the best cryptographers in the world therefore conflicts in their selections and recommendations should be examined with care. For instance, CRYPTREC recommends several 64 bit block ciphers while NESSIE selected none, but CRYPTREC was obliged by its terms of reference to take into account existing standards and practices, while NESSIE was not. Similar differences in terms of reference account for CRYPTREC recommending at least one stream cipher, RC4, while ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scramdisk
''Scramdisk'' is a free on-the-fly encryption program for Windows 95, Windows 98, and Windows Me. A non-free version was also available for Windows NT. The original ''Scramdisk'' is no longer maintained; its author, Shaun Hollingworth, joined Paul Le Roux (the author of E4M) to produce Scramdisk's commercial successor, '' DriveCrypt''. The author of Scramdisk provided a driver for Windows 9x, and the author of E4M provided a driver for Windows NT, enabling cross-platform versions of both programs. There is a new project called ''Scramdisk 4 Linux'' which provides access to Scramdisk and TrueCrypt containers. Older versions of TrueCrypt included support for Scramdisk. Licensing Although Scramdisk's source code is still available, it's stated that it was only released and licensed for private study and not for further development. However, because it contains an implementation of the MISTY1 Encryption Algorithm (by Hironobu Suzuki, a.k.a. H2NP) licensed under the GNU GPL Version ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


MISTY2
Misty may refer to: Music * ''Misty'' (Ray Stevens album), an album by Ray Stevens featuring the above song * ''Misty'' (Richard "Groove" Holmes album), an album by Richard "Groove" Holmes featuring the above song * ''Misty'' (Eddie "Lockjaw" Davis album), an album by Eddie "Lockjaw" Davis and Shirley Scott featuring the above song * ''Misty'' (Harold Mabern album), an album by Harold Mabern featuring the above song * ''Misty'' (Dexter Gordon album), an album by Dexter Gordon featuring the above song * ''Misty'', a 1975 album by American jazz singer Chris Connor * "Misty" (song), by Erroll Garner * "Misty", a song by Kate Bush from the album ''50 Words for Snow'' People Misty is a feminine given name of English origin. It is based on the English word mist. Given name or nickname * Misty Copeland (born 1982), American ballerina * Misty Daniels, American stage actress * Misty Dawn (born 1963), adult film actress * Misty Edwards (born 1979), American contemporary Christian ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




NESSIE
NESSIE (New European Schemes for Signatures, Integrity and Encryption) was a European research project funded from 2000 to 2003 to identify secure cryptographic primitives. The project was comparable to the NIST AES process and the Japanese Government-sponsored CRYPTREC project, but with notable differences from both. In particular, there is both overlap and disagreement between the selections and recommendations from NESSIE and CRYPTREC (as of the August 2003 draft report). The NESSIE participants include some of the foremost active cryptographers in the world, as does the CRYPTREC project. NESSIE was intended to identify and evaluate quality cryptographic designs in several categories, and to that end issued a public call for submissions in March 2000. Forty-two were received, and in February 2003 twelve of the submissions were selected. In addition, five algorithms already publicly known, but not explicitly submitted to the project, were chosen as "selectees". The project has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Camellia (cipher)
In cryptography, Camellia is a symmetric key block cipher with a block size of 128 bits and key sizes of 128, 192 and 256 bits. It was jointly developed by Mitsubishi Electric and NTT of Japan. The cipher has been approved for use by the ISO/IEC, the European Union's NESSIE project and the Japanese CRYPTREC project. The cipher has security levels and processing abilities comparable to the Advanced Encryption Standard. The cipher was designed to be suitable for both software and hardware implementations, from low-cost smart cards to high-speed network systems. It is part of the Transport Layer Security (TLS) cryptographic protocol designed to provide communications security over a computer network such as the Internet. The cipher was named for the flower ''Camellia japonica'', which is known for being long-lived as well as because the cipher was developed in Japan. Design Camellia is a Feistel cipher with either 18 rounds (when using 128-bit keys) or 24 rounds (when using 19 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integral Cryptanalysis
In cryptography, integral cryptanalysis is a cryptanalytic attack that is particularly applicable to block ciphers based on substitution–permutation networks. It was originally designed by Lars Knudsen as a dedicated attack against Square, so it is commonly known as the Square attack. It was also extended to a few other ciphers related to Square: CRYPTON, Rijndael, and SHARK. Stefan Lucks generalized the attack to what he called a ''saturation attack'' and used it to attack Twofish, which is not at all similar to Square, having a radically different Feistel network structure. Forms of integral cryptanalysis have since been applied to a variety of ciphers, including Hierocrypt, IDEA, Camellia, Skipjack, MISTY1, MISTY2, SAFER++, KHAZAD, and ''FOX'' (now called IDEA NXT). Unlike differential cryptanalysis, which uses pairs of chosen plaintexts with a fixed XOR difference, integral cryptanalysis uses sets or even multisets of chosen plaintexts of which part is held consta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mitsuru Matsui
is a Japanese cryptographer and senior researcher for Mitsubishi Electric Company. Career While researching error-correcting codes in 1990, Matsui was inspired by Eli Biham and Adi Shamir's differential cryptanalysis, and discovered the technique of linear cryptanalysis, published in 1993. Differential and linear cryptanalysis are the two major general techniques known for the cryptanalysis of block ciphers. The following year, Matsui was the first to publicly report an experimental cryptanalysis of DES, using the computing power of twelve workstations over a period of fifty days. He is also the author of the MISTY-1 and MISTY-2 block ciphers, and contributed to the design of Camellia and KASUMI Kasumi may refer to: Places * Kasumi, Hyōgo (香住), a former town in Hyōgo Prefecture, Japan * Kasumigaseki (霞が関 "Gate of Mist"), a district in downtown Tokyo * Kasumi, Jajce, a village in Bosnia and Herzegovina Other uses * Kasumi (gi .... For his achievements, Mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Adi Shamir
Adi Shamir ( he, עדי שמיר; born July 6, 1952) is an Israeli cryptographer. He is a co-inventor of the Rivest–Shamir–Adleman (RSA) algorithm (along with Ron Rivest and Len Adleman), a co-inventor of the Feige–Fiat–Shamir identification scheme (along with Uriel Feige and Amos Fiat), one of the inventors of differential cryptanalysis and has made numerous contributions to the fields of cryptography and computer science. Education Born in Tel Aviv, Shamir received a Bachelor of Science (BSc) degree in mathematics from Tel Aviv University in 1973 and obtained his Master of Science (MSc) and Doctor of Philosophy (PhD) degrees in Computer Science from the Weizmann Institute in 1975 and 1977 respectively. Career and research After a year as a postdoctoral researcher at the University of Warwick, he did research at Massachusetts Institute of Technology (MIT) from 1977 to 1980 before returning to be a member of the faculty of Mathematics and Computer Science at the Weizma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alex Biryukov
Alex Biryukov is a cryptographer, currently a full professor at the University of Luxembourg. His notable work includes the design of the stream cipher LEX, as well as the cryptanalysis of numerous cryptographic primitives. In 1998, he developed impossible differential cryptanalysis together with Eli Biham and Adi Shamir. In 1999, he developed the slide attack together with David Wagner. In 2009 he developed, together with Dmitry Khovratovich, the first cryptanalytic attack on full-round AES-192 and AES-256 that is faster than a brute-force attack. In 2015 he developed the Argon2 key derivation function with Daniel Dinu and Dmitry Khovratovich. Since 1994 Alex Biryukov is a member of the International Association for Cryptologic Research International is an adjective (also used as a noun) meaning "between nations". International may also refer to: Music Albums * ''International'' (Kevin Michael album), 2011 * ''International'' (New Order album), 2002 * ''International'' (The T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mobile Phone
A mobile phone, cellular phone, cell phone, cellphone, handphone, hand phone or pocket phone, sometimes shortened to simply mobile, cell, or just phone, is a portable telephone that can make and receive calls over a radio frequency link while the user is moving within a telephone service area. The radio frequency link establishes a connection to the switching systems of a mobile phone operator, which provides access to the public switched telephone network (PSTN). Modern mobile telephone services use a cellular network architecture and, therefore, mobile telephones are called ''cellular telephones'' or ''cell phones'' in North America. In addition to telephony, digital mobile phones ( 2G) support a variety of other services, such as text messaging, multimedia messagIng, email, Internet access, short-range wireless communications (infrared, Bluetooth), business applications, video games and digital photography. Mobile phones offering only those capabilities are known as fea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Cryptanalysis
Differential cryptanalysis is a general form of cryptanalysis applicable primarily to block ciphers, but also to stream ciphers and cryptographic hash functions. In the broadest sense, it is the study of how differences in information input can affect the resultant difference at the output. In the case of a block cipher, it refers to a set of techniques for tracing differences through the network of transformation, discovering where the cipher exhibits non-random behavior, and exploiting such properties to recover the secret key (cryptography key). History The discovery of differential cryptanalysis is generally attributed to Eli Biham and Adi Shamir in the late 1980s, who published a number of attacks against various block ciphers and hash functions, including a theoretical weakness in the Data Encryption Standard (DES). It was noted by Biham and Shamir that DES was surprisingly resistant to differential cryptanalysis but small modifications to the algorithm would make it much mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]