M-estimator
In statistics, M-estimators are a broad class of extremum estimators for which the objective function is a sample average. Both non-linear least squares and maximum likelihood estimation are special cases of M-estimators. The definition of M-estimators was motivated by robust statistics, which contributed new types of M-estimators. The statistical procedure of evaluating an M-estimator on a data set is called M-estimation. 48 samples of robust M-estimators can be found in a recent review study. More generally, an M-estimator may be defined to be a zero of an estimating function. This estimating function is often the derivative of another statistical function. For example, a maximum-likelihood estimate is the point where the derivative of the likelihood function with respect to the parameter is zero; thus, a maximum-likelihood estimator is a critical point of the score function. In many applications, such M-estimators can be thought of as estimating characteristics of the popula ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Robust Statistics
Robust statistics are statistics with good performance for data drawn from a wide range of probability distributions, especially for distributions that are not normal. Robust statistical methods have been developed for many common problems, such as estimating location, scale, and regression parameters. One motivation is to produce statistical methods that are not unduly affected by outliers. Another motivation is to provide methods with good performance when there are small departures from a parametric distribution. For example, robust methods work well for mixtures of two normal distributions with different standard deviations; under this model, non-robust methods like a t-test work poorly. Introduction Robust statistics seek to provide methods that emulate popular statistical methods, but which are not unduly affected by outliers or other small departures from Statistical assumption, model assumptions. In statistics, classical estimation methods rely heavily on assumpti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Robust Statistics
Robust statistics are statistics with good performance for data drawn from a wide range of probability distributions, especially for distributions that are not normal. Robust statistical methods have been developed for many common problems, such as estimating location, scale, and regression parameters. One motivation is to produce statistical methods that are not unduly affected by outliers. Another motivation is to provide methods with good performance when there are small departures from a parametric distribution. For example, robust methods work well for mixtures of two normal distributions with different standard deviations; under this model, non-robust methods like a t-test work poorly. Introduction Robust statistics seek to provide methods that emulate popular statistical methods, but which are not unduly affected by outliers or other small departures from Statistical assumption, model assumptions. In statistics, classical estimation methods rely heavily on assumpti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Redescending M-estimator
In statistics, redescending M-estimators are ''Ψ''-type M-estimators which have ''ψ'' functions that are non-decreasing near the origin, but decreasing toward 0 far from the origin. Their ''ψ'' functions can be chosen to redescend smoothly to zero, so that they usually satisfy ''ψ''(''x'') = 0 for all x with , ''x'', > ''r'', where ''r'' is referred to as the minimum rejection point. Due to these properties of the ''ψ'' function, these kinds of estimators are very efficient, have a high breakdown point and, unlike other outlier rejection techniques, they do not suffer from a masking effect. They are efficient because they completely reject gross outliers, and do not completely ignore moderately large outliers (like median). Advantages Redescending M-estimators have high breakdown points (close to 0.5), and their ''Ψ'' function can be chosen to redescend smoothly to 0. This means that moderately large outliers are not ignored completely, and greatly improves the efficiency ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Redescending M-estimator
In statistics, redescending M-estimators are ''Ψ''-type M-estimators which have ''ψ'' functions that are non-decreasing near the origin, but decreasing toward 0 far from the origin. Their ''ψ'' functions can be chosen to redescend smoothly to zero, so that they usually satisfy ''ψ''(''x'') = 0 for all x with , ''x'', > ''r'', where ''r'' is referred to as the minimum rejection point. Due to these properties of the ''ψ'' function, these kinds of estimators are very efficient, have a high breakdown point and, unlike other outlier rejection techniques, they do not suffer from a masking effect. They are efficient because they completely reject gross outliers, and do not completely ignore moderately large outliers (like median). Advantages Redescending M-estimators have high breakdown points (close to 0.5), and their ''Ψ'' function can be chosen to redescend smoothly to 0. This means that moderately large outliers are not ignored completely, and greatly improves the efficiency ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
L-estimator
In statistics, an L-estimator is an estimator which is a linear combination of order statistics of the measurements (which is also called an L-statistic). This can be as little as a single point, as in the median (of an odd number of values), or as many as all points, as in the mean. The main benefits of L-estimators are that they are often extremely simple, and often robust statistics: assuming sorted data, they are very easy to calculate and interpret, and are often resistant to outliers. They thus are useful in robust statistics, as descriptive statistics, in statistics education, and when computation is difficult. However, they are inefficient, and in modern times robust statistics M-estimators are preferred, though these are much more difficult computationally. In many circumstances L-estimators are reasonably efficient, and thus adequate for initial estimation. Examples A basic example is the median. Given ''n'' values x_1, \ldots, x_n, if n=2k+1 is odd, the median equals x ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Maximum Likelihood Estimation
In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference. If the likelihood function is differentiable, the derivative test for finding maxima can be applied. In some cases, the first-order conditions of the likelihood function can be solved analytically; for instance, the ordinary least squares estimator for a linear regression model maximizes the likelihood when all observed outcomes are assumed to have Normal distributions with the same variance. From the perspective of Bayesian inference, M ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Maximum Likelihood
In statistics, maximum likelihood estimation (MLE) is a method of estimation theory, estimating the Statistical parameter, parameters of an assumed probability distribution, given some observed data. This is achieved by Mathematical optimization, maximizing a likelihood function so that, under the assumed statistical model, the Realization (probability), observed data is most probable. The point estimate, point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference. If the likelihood function is Differentiable function, differentiable, the derivative test for finding maxima can be applied. In some cases, the first-order conditions of the likelihood function can be solved analytically; for instance, the ordinary least squares estimator for a linear regression model maximizes the likelihood when ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Iteratively Re-weighted Least Squares
The method of iteratively reweighted least squares (IRLS) is used to solve certain optimization problems with objective functions of the form of a ''p''-norm: :\underset \sum_^n \big, y_i - f_i (\boldsymbol\beta) \big, ^p, by an iterative method in which each step involves solving a weighted least squares problem of the form:C. Sidney Burrus, Iterative Reweighted Least Squares' :\boldsymbol\beta^ = \underset \sum_^n w_i (\boldsymbol\beta^) \big, y_i - f_i (\boldsymbol\beta) \big, ^2. IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set. For example, by minimizing the least absolute errors rather than the least square errors. One of the advantages of IRLS over linear programming and convex programming is that it can be used with Gauss–Newton and Levenberg–Marquardt numerical algorithms. Exa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Extremum Estimator
In statistics and econometrics, extremum estimators are a wide class of estimators for parametric models that are calculated through maximization (or minimization) of a certain objective function, which depends on the data. The general theory of extremum estimators was developed by . Definition An estimator \scriptstyle\hat\theta is called an extremum estimator, if there is an ''objective function'' \scriptstyle\hat_n such that : \hat\theta = \underset\ \widehat_n(\theta), where Θ is the parameter space. Sometimes a slightly weaker definition is given: : \widehat Q_n(\hat\theta) \geq \max_\,\widehat Q_n(\theta) - o_p(1), where ''o''''p''(1) is the variable converging in probability to zero. With this modification \scriptstyle\hat\theta doesn't have to be the exact maximizer of the objective function, just be sufficiently close to it. The theory of extremum estimators does not specify what the objective function should be. There are various types of objective fu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Estimating Equations
In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated. This can be thought of as a generalisation of many classical methods—the method of moments, least squares, and maximum likelihood—as well as some recent methods like M-estimators. The basis of the method is to have, or to find, a set of simultaneous equations involving both the sample data and the unknown model parameters which are to be solved in order to define the estimates of the parameters. Various components of the equations are defined in terms of the set of observed data on which the estimates are to be based. Important examples of estimating equations are the likelihood equations. Examples Consider the problem of estimating the rate parameter, λ of the exponential distribution which has the probability density function: : f(x;\lambda) = \left\{\begin{matrix} \lambda e^{-\lambda x}, &\; x \ge 0, \\ 0, &\; x < 0. \end{matr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
S-estimator
The goal of S-estimators is to have a simple high-breakdown regression estimator, which share the flexibility and nice asymptotic properties of M-estimators. The name "S-estimators" was chosen as they are based on estimators of scale. We will consider estimators of scale defined by a function \rho, which satisfy * R1 – \rho is symmetric, continuously differentiable and \rho(0)=0. * R2 – there exists c > 0 such that \rho is strictly increasing on , \infty For any sample \ of real numbers, we define the scale estimate s(r_1, ..., r_n) as the solution of \frac\sum_{i=1}^n \rho(r_i/s) = K, where K is the expectation value In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a ... of \rho for a standard normal distribution. (If there are more solutions to the above equation, then ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Statistics
Statistics (from German language, German: ''wikt:Statistik#German, Statistik'', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of statistical survey, surveys and experimental design, experiments.Dodge, Y. (2006) ''The Oxford Dictionary of Statistical Terms'', Oxford University Press. When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey sample (statistics), samples. Representative sampling as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |