Lucas Sequence
   HOME
*





Lucas Sequence
In mathematics, the Lucas sequences U_n(P,Q) and V_n(P, Q) are certain constant-recursive integer sequences that satisfy the recurrence relation : x_n = P \cdot x_ - Q \cdot x_ where P and Q are fixed integers. Any sequence satisfying this recurrence relation can be represented as a linear combination of the Lucas sequences U_n(P, Q) and V_n(P, Q). More generally, Lucas sequences U_n(P, Q) and V_n(P, Q) represent sequences of polynomials in P and Q with integer coefficients. Famous examples of Lucas sequences include the Fibonacci numbers, Mersenne numbers, Pell numbers, Lucas numbers, Jacobsthal numbers, and a superset of Fermat numbers . Lucas sequences are named after the French mathematician Édouard Lucas. Recurrence relations Given two integer parameters P and Q, the Lucas sequences of the first kind U_n(P,Q) and of the second kind V_n(P,Q) are defined by the recurrence relations: :\begin U_0(P,Q)&=0, \\ U_1(P,Q)&=1, \\ U_n(P,Q)&=P\cdot U_(P,Q)-Q\cdot U_(P,Q) \mbox ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lucas Number
The Lucas numbers or Lucas series are an integer sequence named after the mathematician François Édouard Anatole Lucas (1842–1891), who studied both that sequence and the closely related Fibonacci numbers. Lucas numbers and Fibonacci numbers form complementary instances of Lucas sequences. The Lucas series has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values. This produces a sequence where the ratios of successive terms approach the golden ratio, and in fact the terms themselves are roundings of integer powers of the golden ratio. The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between. The first few Lucas numbers are : 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349 .... Defini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pell Equation
Pell's equation, also called the Pell–Fermat equation, is any Diophantine equation of the form x^2 - ny^2 = 1, where ''n'' is a given positive nonsquare integer, and integer solutions are sought for ''x'' and ''y''. In Cartesian coordinates, the equation is represented by a hyperbola; solutions occur wherever the curve passes through a point whose ''x'' and ''y'' coordinates are both integers, such as the trivial solution with ''x'' = 1 and ''y'' = 0. Joseph Louis Lagrange proved that, as long as ''n'' is not a perfect square, Pell's equation has infinitely many distinct integer solutions. These solutions may be used to accurately approximate the square root of ''n'' by rational numbers of the form ''x''/''y''. This equation was first studied extensively in India starting with Brahmagupta, who found an integer solution to 92x^2 + 1 = y^2 in his ''Brāhmasphuṭasiddhānta'' circa 628. Bhaskara II in the 12th century and Narayana Pandit i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lucas Polynomials
In mathematics, the Fibonacci polynomials are a polynomial sequence which can be considered as a generalization of the Fibonacci numbers. The polynomials generated in a similar way from the Lucas numbers are called Lucas polynomials. Definition These Fibonacci polynomials are defined by a recurrence relation:Benjamin & Quinn p. 141 :F_n(x)= \begin 0, & \mbox n = 0\\ 1, & \mbox n = 1\\ x F_(x) + F_(x),& \mbox n \geq 2 \end The Lucas polynomials use the same recurrence with different starting values: :L_n(x) = \begin 2, & \mbox n = 0 \\ x, & \mbox n = 1 \\ x L_(x) + L_(x), & \mbox n \geq 2. \end They can be defined for negative indices bySpringer :F_(x)=(-1)^F_(x), :L_(x)=(-1)^nL_(x). The Fibonacci polynomials form a sequence of orthogonal polynomials with A_n=C_n=1 and B_n=0. Examples The first few Fibonacci polynomials are: :F_0(x)=0 \, :F_1(x)=1 \, :F_2(x)=x \, :F_3(x)=x^2+1 \, :F_4(x)=x^3+2x \, :F_5(x)=x^4+3x^2+1 \, :F_6(x)=x^5+4x^3+3x \, The first few Lucas polynomials ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fibonacci Polynomials
In mathematics, the Fibonacci polynomials are a polynomial sequence which can be considered as a generalization of the Fibonacci numbers. The polynomials generated in a similar way from the Lucas numbers are called Lucas polynomials. Definition These Fibonacci polynomials are defined by a recurrence relation:Benjamin & Quinn p. 141 :F_n(x)= \begin 0, & \mbox n = 0\\ 1, & \mbox n = 1\\ x F_(x) + F_(x),& \mbox n \geq 2 \end The Lucas polynomials use the same recurrence with different starting values: :L_n(x) = \begin 2, & \mbox n = 0 \\ x, & \mbox n = 1 \\ x L_(x) + L_(x), & \mbox n \geq 2. \end They can be defined for negative indices bySpringer :F_(x)=(-1)^F_(x), :L_(x)=(-1)^nL_(x). The Fibonacci polynomials form a sequence of orthogonal polynomials with A_n=C_n=1 and B_n=0. Examples The first few Fibonacci polynomials are: :F_0(x)=0 \, :F_1(x)=1 \, :F_2(x)=x \, :F_3(x)=x^2+1 \, :F_4(x)=x^3+2x \, :F_5(x)=x^4+3x^2+1 \, :F_6(x)=x^5+4x^3+3x \, The first few Lucas polynomials ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square Triangular Number
In mathematics, a square triangular number (or triangular square number) is a number which is both a triangular number and a perfect square. There are infinitely many square triangular numbers; the first few are: :0, 1, 36, , , , , , , Explicit formulas Write for the th square triangular number, and write and for the sides of the corresponding square and triangle, so that :N_k = s_k^2 = \frac. Define the ''triangular root'' of a triangular number to be . From this definition and the quadratic formula, :n = \frac. Therefore, is triangular ( is an integer) if and only if is square. Consequently, a square number is also triangular if and only if is square, that is, there are numbers and such that . This is an instance of the Pell equation with . All Pell equations have the trivial solution for any ; this is called the zeroth solution, and indexed as . If denotes the th nontrivial solution to any Pell equation for a particular , it can be shown by the method of desc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacobsthal–Lucas Numbers
In mathematics, the Jacobsthal numbers are an integer sequence named after the German mathematician Ernst Jacobsthal. Like the related Fibonacci numbers, they are a specific type of Lucas sequence U_n(P,Q) for which ''P'' = 1, and ''Q'' = −2—and are defined by a similar recurrence relation: in simple terms, the sequence starts with 0 and 1, then each following number is found by adding the number before it to twice the number before that. The first Jacobsthal numbers are: : 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, … A Jacobsthal prime is a Jacobsthal number that is also prime. The first Jacobsthal primes are: :3, 5, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, 201487636602438195784363, 845100400152152934331135470251, 56713727820156410577229101238628035243, … Jacobsthal numbers Jacobsthal numbers are defined by the recurrence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pell–Lucas Numbers
In mathematics, the Pell numbers are an infinite sequence of integers, known since ancient times, that comprise the denominators of the closest rational approximations to the square root of 2. This sequence of approximations begins , , , , and , so the sequence of Pell numbers begins with 1, 2, 5, 12, and 29. The numerators of the same sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers; these numbers form a second infinite sequence that begins with 2, 6, 14, 34, and 82. Both the Pell numbers and the companion Pell numbers may be calculated by means of a recurrence relation similar to that for the Fibonacci numbers, and both sequences of numbers grow exponentially, proportionally to powers of the silver ratio 1 + . As well as being used to approximate the square root of two, Pell numbers can be used to find square triangular numbers, to construct integer approximations to the right isosceles triangle, and to solve certain combina ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carmichael's Theorem
In number theory, Carmichael's theorem, named after the American mathematician R. D. Carmichael, states that, for any nondegenerate Lucas sequence of the first kind ''U''''n''(''P'', ''Q'') with relatively prime parameters ''P'', ''Q'' and positive discriminant, an element ''U''''n'' with ''n'' ≠ 1, 2, 6 has at least one prime divisor that does not divide any earlier one except the 12th Fibonacci number F(12) = ''U''12(1, −1) = 144 and its equivalent ''U''12(−1, −1) = −144. In particular, for ''n'' greater than 12, the ''n''th Fibonacci number F(''n'') has at least one prime divisor that does not divide any earlier Fibonacci number. Carmichael (1913, Theorem 21) proved this theorem. Recently, Yabuta (2001) gave a simple proof. Statement Given two relatively prime integers ''P'' and ''Q'', such that D=P^2-4Q>0 and , let be the Lucas sequence of the first kind defined by :\begin U_0(P,Q)&=0, \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Factor
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lucas Pseudoprime
Lucas pseudoprimes and Fibonacci pseudoprimes are composite integers that pass certain tests which all primes and very few composite numbers pass: in this case, criteria relative to some Lucas sequence. Baillie-Wagstaff-Lucas pseudoprimes Baillie and Wagstaff define Lucas pseudoprimes as follows: Given integers ''P'' and ''Q'', where ''P'' > 0 and D=P^2-4Q, let ''Uk''(''P'', ''Q'') and ''Vk''(''P'', ''Q'') be the corresponding Lucas sequences. Let ''n'' be a positive integer and let \left(\tfrac\right) be the Jacobi symbol. We define : \delta(n)=n-\left(\tfrac\right). If ''n'' is a prime that does not divide ''Q'', then the following congruence condition holds: If this congruence does ''not'' hold, then ''n'' is ''not'' prime. If ''n'' is ''composite'', then this congruence ''usually'' does not hold. These are the key facts that make Lucas sequences useful in primality testing. The congruence () represents one of two congruences defining a Frobenius pseudoprime. Hence, ev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lucas–Lehmer Primality Test
In mathematics, the Lucas–Lehmer test (LLT) is a primality test for Mersenne numbers. The test was originally developed by Édouard Lucas in 1876 and subsequently improved by Derrick Henry Lehmer in the 1930s. The test The Lucas–Lehmer test works as follows. Let ''M''''p'' = 2''p'' − 1 be the Mersenne number to test with ''p'' an odd prime. The primality of ''p'' can be efficiently checked with a simple algorithm like trial division since ''p'' is exponentially smaller than ''M''''p''. Define a sequence \ for all ''i'' ≥ 0 by : s_i= \begin 4 & \texti=0; \\ s_^2-2 & \text \end The first few terms of this sequence are 4, 14, 194, 37634, ... . Then ''M''''p'' is prime if and only if :s_ \equiv 0 \pmod. The number ''s''''p'' − 2 mod ''M''''p'' is called the Lucas–Lehmer residue of ''p''. (Some authors equivalently set ''s''1 = 4 and test ''s''''p''−1 mod ''M''''p''). In pseudocode, the t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermat's Little Theorem
Fermat's little theorem states that if ''p'' is a prime number, then for any integer ''a'', the number a^p - a is an integer multiple of ''p''. In the notation of modular arithmetic, this is expressed as : a^p \equiv a \pmod p. For example, if = 2 and = 7, then 27 = 128, and 128 − 2 = 126 = 7 × 18 is an integer multiple of 7. If is not divisible by , that is if is coprime to , Fermat's little theorem is equivalent to the statement that is an integer multiple of , or in symbols: : a^ \equiv 1 \pmod p. For example, if = 2 and = 7, then 26 = 64, and 64 − 1 = 63 = 7 × 9 is thus a multiple of 7. Fermat's little theorem is the basis for the Fermat primality test and is one of the fundamental results of elementary number theory. The theorem is named after Pierre de Fermat, who stated it in 1640. It is called the "little theorem" to distinguish it from Fermat's Last Theorem.. History Pierre de Fermat first stated the theorem in a letter dated October ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]