Lovász Local Lemma
   HOME
*





Lovász Local Lemma
In probability theory, if a large number of events are all independent of one another and each has probability less than 1, then there is a positive (possibly small) probability that none of the events will occur. The Lovász local lemma allows one to relax the independence condition slightly: As long as the events are "mostly" independent from one another and aren't individually too likely, then there will still be a positive probability that none of them occurs. It is most commonly used in the probabilistic method, in particular to give existence proofs. There are several different versions of the lemma. The simplest and most frequently used is the symmetric version given below. A weaker version was proved in 1975 by László Lovász and Paul Erdős in the article ''Problems and results on 3-chromatic hypergraphs and some related questions''. For other versions, see . In 2020, Robin Moser and Gábor Tardos received the Gödel Prize for their algorithmic version of the Lovász L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of non-deterministic or uncertain processes or measured quantities that may either be single occurrences or evolve over time in a random fashion). Although it is not possible to perfectly predict random events, much can be said about their behavior. Two major results in probability ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

E (mathematical Constant)
The number , also known as Euler's number, is a mathematical constant approximately equal to 2.71828 that can be characterized in many ways. It is the base of the natural logarithms. It is the limit of as approaches infinity, an expression that arises in the study of compound interest. It can also be calculated as the sum of the infinite series e = \sum\limits_^ \frac = 1 + \frac + \frac + \frac + \cdots. It is also the unique positive number such that the graph of the function has a slope of 1 at . The (natural) exponential function is the unique function that equals its own derivative and satisfies the equation ; hence one can also define as . The natural logarithm, or logarithm to base , is the inverse function to the natural exponential function. The natural logarithm of a number can be defined directly as the area under the curve between and , in which case is the value of for which this area equals one (see image). There are various other characteriz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Theorems
Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking, 0 indicates impossibility of the event and 1 indicates certainty."Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th Ed, (2009), .William Feller, ''An Introduction to Probability Theory and Its Applications'', (Vol 1), 3rd Ed, (1968), Wiley, . The higher the probability of an event, the more likely it is that the event will occur. A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%). These conce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shearer's Inequality
Shearer's inequality or also Shearer's lemma, in mathematics, is an inequality in information theory relating the entropy of a set of variables to the entropies of a collection of subsets. It is named for mathematician James B. Shearer. Concretely, it states that if ''X''1, ..., ''X''''d'' are random variables and ''S''1, ..., ''S''''n'' are subsets of such that every integer between 1 and ''d'' lies in at least ''r'' of these subsets, then : H X_1,\dots,X_d)\leq \frac\sum_^n H X_j)_/math> where H is entropy and (X_)_ is the Cartesian product of random variables X_ with indices ''j'' in S_. Combinatorial version Let \mathcal be a family of subsets of (possibly with repeats) with each i\in /math> included in at least t members of \mathcal. Let \mathcal be another set of subsets of \mathcal F. Then \mathcal , \mathcal, \leq \prod_\operatorname_(\mathcal)^ where \operatorname_(\mathcal)=\ the set of possible intersections of elements of \mathcal with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bayes' Theorem
In probability theory and statistics, Bayes' theorem (alternatively Bayes' law or Bayes' rule), named after Thomas Bayes, describes the probability of an event, based on prior knowledge of conditions that might be related to the event. For example, if the risk of developing health problems is known to increase with age, Bayes' theorem allows the risk to an individual of a known age to be assessed more accurately (by conditioning it on their age) than simply assuming that the individual is typical of the population as a whole. One of the many applications of Bayes' theorem is Bayesian inference, a particular approach to statistical inference. When applied, the probabilities involved in the theorem may have different probability interpretations. With Bayesian probability interpretation, the theorem expresses how a degree of belief, expressed as a probability, should rationally change to account for the availability of related evidence. Bayesian inference is fundamental to Bayesia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinality
In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized to infinite sets, which allows one to distinguish between different types of infinity, and to perform arithmetic on them. There are two approaches to cardinality: one which compares sets directly using bijections and injections, and another which uses cardinal numbers. The cardinality of a set is also called its size, when no confusion with other notions of size is possible. The cardinality of a set A is usually denoted , A, , with a vertical bar on each side; this is the same notation as absolute value, and the meaning depends on context. The cardinality of a set A may alternatively be denoted by n(A), , \operatorname(A), or \#A. History A crude sense of cardinality, an awareness that groups of things or events compare with other grou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Principle Of Mathematical Induction
Mathematical induction is a method for proving that a statement ''P''(''n'') is true for every natural number ''n'', that is, that the infinitely many cases ''P''(0), ''P''(1), ''P''(2), ''P''(3), ...  all hold. Informal metaphors help to explain this technique, such as falling dominoes or climbing a ladder: A proof by induction consists of two cases. The first, the base case, proves the statement for ''n'' = 0 without assuming any knowledge of other cases. The second case, the induction step, proves that ''if'' the statement holds for any given case ''n'' = ''k'', ''then'' it must also hold for the next case ''n'' = ''k'' + 1. These two steps establish that the statement holds for every natural number ''n''. The base case does not necessarily begin with ''n'' = 0, but often with ''n'' = 1, and possibly with any fixed natural number ''n'' = ''N'', establishing the truth of the statement for all natu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Robin Moser
Robin may refer to: Animals * Australasian robins, red-breasted songbirds of the family Petroicidae * Many members of the subfamily Saxicolinae (Old World chats), including: **European robin (''Erithacus rubecula'') ** Bush-robin **Forest robin **Magpie-robin ** Scrub-robin **Robin-chat, two bird genera ** Bagobo robin **White-starred robin ** White-throated robin ** Blue-fronted robin **Larvivora (6 species) **Myiomela (3 species) * Some red-breasted New-World true thrushes (''Turdus'') of the family Turdidae, including: ** American robin (''T. migratorius'') (so named by 1703) ** Rufous-backed thrush (''T. rufopalliatus'') ** Rufous-collared thrush (''T. rufitorques'') ** Formerly other American thrushes, such as the clay-colored thrush (''T. grayi'') * Pekin robin or Japanese (hill) robin, archaic names for the red-billed leiothrix (''Leiothrix lutea''), red-breasted songbirds * Sea robin, a fish with small "legs" (actually spines) Arts, entertainment, and media Fict ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Algorithmic Lovász Local Lemma
In theoretical computer science, the algorithmic Lovász local lemma gives an algorithmic way of constructing objects that obey a system of constraints with limited dependence. Given a finite set of ''bad'' events in a probability space with limited dependence amongst the ''Ai''s and with specific bounds on their respective probabilities, the Lovász local lemma proves that with non-zero probability all of these events can be avoided. However, the lemma is non-constructive in that it does not provide any insight on ''how'' to avoid the bad events. If the events are determined by a finite collection of mutually independent random variables, a simple Las Vegas algorithm with expected polynomial runtime proposed by Robin Moser and Gábor Tardos can compute an assignment to the random variables such that all events are avoided. Review of Lovász local lemma The Lovász Local Lemma is a powerful tool commonly used in the probabilistic method to prove the existence of certain co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joel Spencer
Joel Spencer (born April 20, 1946) is an American mathematician. He is a combinatorialist who has worked on probabilistic methods in combinatorics and on Ramsey theory. He received his doctorate from Harvard University in 1970, under the supervision of Andrew Gleason. He is currently () a professor at the Courant Institute of Mathematical Sciences of New York University. Spencer's work was heavily influenced by Paul Erdős, with whom he coauthored many papers (giving him an Erdős number of 1). In 1963, while studying at the Massachusetts Institute of Technology, Spencer became a Putnam Fellow. In 1984 Spencer received a Lester R. Ford Award. He was an Erdős Lecturer at Hebrew University of Jerusalem in 2001. In 2012 he became a fellow of the American Mathematical Society. He was elected as a fellow of the Society for Industrial and Applied Mathematics in 2017, "for contributions to discrete mathematics and theory of computing, particularly random graphs and networks, Ramsey ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistical Independence
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes. Two events are independent, statistically independent, or stochastically independent if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds. Similarly, two random variables are independent if the realization of one does not affect the probability distribution of the other. When dealing with collections of more than two events, two notions of independence need to be distinguished. The events are called pairwise independent if any two events in the collection are independent of each other, while mutual independence (or collective independence) of events means, informally speaking, that each event is independent of any combination of other events in the collection. A similar notion exists for collections of random variables. Mutual independence implies pairwise independence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]